Ферменты

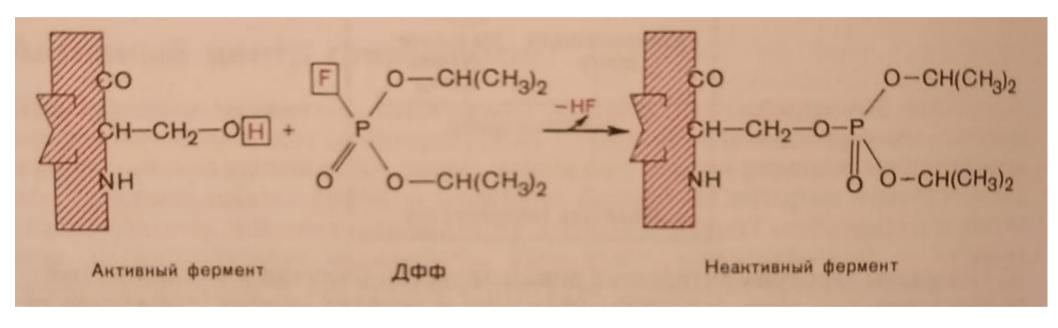
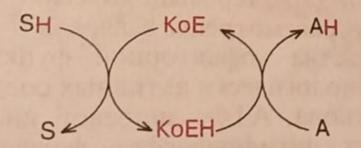
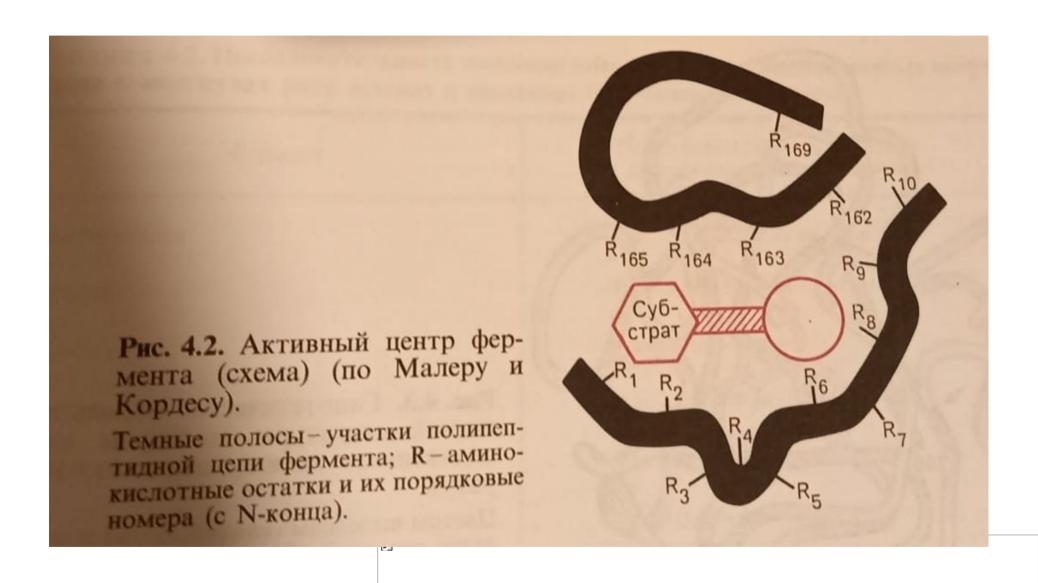

1.ОБЩАЯ ИНФОРМАЦИЯ

Рис. 4.1. Области применения ферментов в биологии и медицине (по Грину).

2. ХИМИЧЕСКАЯ ПРИРОДА ФЕРМЕНТОВ


- Экспериментально было доказано, что ферменты имеют белковую природу. Ферменты при гидролизе распадаются на аминокислоты.
- Для стабилизации фермента используют хелатообразующие агенты. Для сохранения стабильности ферментов их хранят высушенным или в замороженном состоянии, также многие ферменты стабильны в виде суспензии в концентрированных растворах сульфата аммония.


3.СТРОЕНИЕ ФЕРМЕНТОВ

• Существуют простые и сложные ферменты. Простые ферменты являются полипептидными цепями и при гидролизе распадаются на аминокислоты. К ним относятся гидролитические ферменты. Большинство ферментов относятся к сложным, которые содержат небелковый компонент — кофактор, присутствие которого необходимо для каталитической активности. Кофакторы могут иметь различную химическую природу и отличаться по прочности связи с полипептидной цепью.

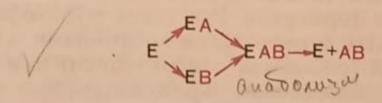
Роль кофермента (Ко) в качестве переносчика, например, атомов водорода может быть представлена в виде схемы, где SH-субстрат, КоЕ-холофермент, А-акцептор протона:

4.АКТИВНЫЙ ЦЕНТР ФЕРМЕНТОВ

5.ИЗОФЕРМЕНТЫ

 Изоферменты — множественные формы фермента, катализирующие одну и ту же реакцию, но отличающиеся друг от друга по физическим и химическим свойствам, по сродству к субстрату, максимальной скорости катализируемой реакции, электрофоретической подвижности или регуляторным свойствам.

3


6.МУЛЬТИМОЛЕКУЛЯРНЫЕ ФЕРМЕНТНЫЕ СИСТЕМЫ

• В надмолекулярные/мультимолекулярные ферментные комплексы входят разные ферменты, катализирующие последовательные ступени превращения какого-либо субстрата. Особенность: прочность ассоциации ферментов и определенная последовательность прохождения промежуточных стадий во времени, обусловленная порядком расположения каталитически активных (различных) белков в пространстве (путь превращения в пространстве и времени).

7.МЕХАНИЗМ ДЕЙСТВИЯ ФЕРМЕНТОВ

- При энзиматическом катализе фермент (E) соединяется с субстратом (S), образуя нестойкий промежуточный фермент-субстратный комплекс (ES), который в конце реакции распадается с освобождением фермента и продукта реакции (P).
- E+S□ES->...->E+P

В реакциях анаболизма, например $A + B \rightarrow AB$, фермент может соединяться как с одним, так и с другим субстратом или обоими субстратами:

В реакциях катаболизма, например АВ → А + В:

a)
$$AB + E \rightarrow ABE$$

b) $ABE \rightarrow A + BE$
B) $BE \rightarrow B + E$
(a + 6 + B): $AB + E \rightarrow A + B + E$

8.ОСНОВНЫЕ СВОЙСТВА ФЕРМЕНТОВ

Фермент	pH	Фермент	рН
Пепсин Катепсин В Амилаза из солода Сахараза кишечная Амилаза слюны	1,5-2,5 4,5-5,0 4,9-5,2 5,8-6,2 6,8-7,0	Каталаза Уреаза Липаза панкреатическая Трипсин Аргиназа	6,8-7,0 7,0-7,2 7,0-8,5 7,5-8,5 9,5-10,0

9.АКТИВИРОВАНИЕ И ИНГИБИРОВАНИЕ ФЕРМЕНТОВ

Существует два типа веществ: активаторы — повышают скорость реакции (как орагнические, так и неорганические вещества), ингибиторы — тормозят реакцию.

Фермент	Металл	Фермент	Металл
Цитохромы	Fe	Амилаза	Ca
Каталаза	Fe	Липаза	Ca
Пероксидаза	Fe	Карбоангидраза	Zn
Гриптофаноксидаза	Fe	Лактатдегидрогеназа	Zn
Гомогентизиказа	Fe	Уриказа	Zn
Аскорбатоксидаза	Cu	Карбоксипептидаза	Zn
Гирозиназа	Cu	Пируваткарбоксилаза	Mg
Фенолоксидаза	Cu	Фосфатазы	Mg
Ксантиноксидаза	Mo	Фосфоглюкокиназа	Mg
Нитратредуктаза	Mo	Аргиназа	Mn
Альдегидоксидаза	Mo	Фосфоглюкомутаза	Mn
Некоторые пептидазы	Co	Холинэстераза	Mn

10.ТИПЫ ИНГИБИРОВАНИЯ

- . Необратимое
- . Обратимое:
- -Конкурентное
- -Неконкурентное
- -Бесконкурентное
- . Смешанное

11.РЕГУЛЯЦИЯ АКТИВНОСТИ ФЕРМЕНТА

- -Влияние закона действия масс.
- Изменение количества фермента
- -Проферменты
- -Химическая модификация фермента

-Аллостерическая регуляция

Рис. 4.23. Ковалентная модификация фермента путем фосфорилирования-дефосфорилирования остатков серина.

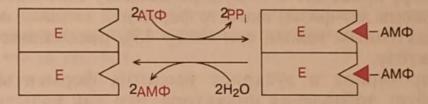


Рис. 4.24. Нековалентная модификация фермента путем аденилирования-деаденилирования.

12.КЛАССИФИКАЦИЯ И НОМЕНКУПАТУРА

№	Класс	Тип катализируемой реакции
1	Оксидоредуктазы	Перенос электронов и протонов
2	Трансферазы	Перенос групп атомов, отличных от атомов водорода
3	Гидролазы	Гидролиз различных связей (с участием молекулы воды)
4	Лиазы	Образование двойных связей за счет удаления групп или добавление групп за счет разрыва двойных связей
5	Изомеразы	Внутримолекулярный перенос групп с образованием изомерных форм
6	Лигазы (синтетазы)	Соединение двух молекул и образование связей С—С, С—О, С—S и С—N, сопряженных с разрывом пирофосфатно связи АТФ

[•] Код фермента содержит: буквы — КФ, первая цифра — класс, вторая — подкласс (основные виды субстрата), третья — подподкласс, четвертая — порядковый номер. Первые три цифры говорят о типе фермента.