Seminar 2: How to draw the tolerance zones of transition fit

Standardization and measurement assurance of engineering production

Step 1: Example

We have two joint parts (details):

shaft Ø 25^{+0.015}_{+0.005}
bush Ø 25^{+0.025}

(we have empty place for lower deviation because it is = 0)

Step 2: Calculation of shaft dimensions

We know two limited deviations:

- Upper deviation: es=dmax- dn
- Lower deviation: ei=dmin-dn

dn, dmax & dmin are given:

dn=25 mm

dmax=25.015 mm

dmin=25.005 mm

So es= 25.015-25.000=0.015 mm=15μm (micrometers) ei=25.005-25.000=0.005 mm=5 μm

Step 3: Calculation of bush dimensions

We know two limited deviations:

- Upper deviation: ES=Dmax- Dn
- Lower deviation: EI=Dmin-dn
- Dn, Dmax & Dmin are given:
 - Dn=25 mm
 - Dmax=25.025 mm
 - Dmin=25.000 mm
- So ES= 25.025-25.000=0.025 mm=25µm
 - EI=25.000-25.000=0 mm=0 µm

Step 4: Drawing zero line

draw the zero line level of a nominal diameter

Step 5: Drawing the shaft tolerance zone

the height of rectangular - is the value of tolerance

Step 6: Drawing the hole tolerance zone

zones of trasition fits are intersected by vertical direction

Step 7: Clearances and interferences of transition fit

For transition fits we have both clearances and interferences but they are go to zero So Smin=0 and Nmin=0 And Smax=Dmax-dmin Nmax=dmax-Dmin

Step 8: Calculation of Smax

maximum clearance is between upper side of hole zone and lower side of shaft zone

Step 9: Calculation of Nmax

maximum interference is between upper side of shaft zone and lower side of hole zone

Step 10: Calculation of fit tolerance

The fit tolerance for transition fit is equal to sum of maximum clearance and maximum interference & also equal to sum of two details tolerances:

Tt=Smax+Nmax= Td+TD= 20+15=35mcm