
Nested
Inner classes

IT Academy

Agenda

• Nested Classes
• Non-static Nested Classes
• Static Nested Classes
• Local Inner Classes
• Anonymous Inner Class

• Object cloning
• Wrapper pattern
• Generic in Java

Nested Classes
• In Java, just like methods, variables of a class too can have another class as its

member.

• The class written within is called the nested class, and the class that holds the
inner class is called the outer class.

• Nested classes are divided into two types:

• non-static nested classes − these are the
non-static members of a class.

• static nested classes − these are the
static members of a class.

Non-static Nested Classes
• Inner classes are a security mechanism in Java.

public class Person {
 private FullName fullName = new FullName();
 private int age;

 public Person(String firsName, String lastName, int age) {
 fullName.firstName = firsName;
 fullName.lastName = lastName;
 this.age = age;
 }

 // getters and setters

 private class FullName {
 private String firstName;
 private String lastName;
 }
}

A class cannot be associated with the
access modifier private, but if we
have the class as a member of other
class, then the inner class can be
made private.

Non-static Nested Classes
• In the given example, we make the inner class private and access the class

through fields.

// not allowed
// FullName = fullName = new FullName();

Person person = new Person("Vasyl", "Petrenko", 25);

String fullName = person.getFullName();
int age = person.getAge();

System.out.println(fullName + ", " + age + " years old");

Vasyl Petrenko, 25 years old

Non-static Nested Classes
• If inner class isn't private you can instantiate it !
public class Person {
 private int age;

 public Person(int age) {
 this.age = age;
 }

 public class FullName {
 private String firstName;
 private String lastName;

 public FullName(String firstName, String lastName) {
 this.firstName = firstName; this.lastName = lastName;
 }

 public void info() {
 System. out.println(firstName + " " + lastName + ", " + age + " years old");
 }
 }
}

Non-static Nested Classes
• To instantiate the inner class, initially you have to instantiate the outer class.
• Using the object of the outer class, following is the way in which you can instantiate

the inner class.

Person person = new Person(25);
Person.FullName personWithName = person.new FullName("Vasyl", "Petrenko");

personWithName.info();

Person.FullName personWithName =
 new Person(25).new FullName("Vasyl", "Petrenko");

or

Vasyl Petrenko, 25 years old

Static Nested Classes
• A static inner class is a nested class which is a static member of the outer

class.

• It can be accessed without
instantiating the outer
class, using other static
members.

• Like static members, a static
nested class does not have
access to the instance
variables and methods of
the outer class.

class Entity {
 private static int count = 0;

 public Entity() {
 new Counter().setCount();
 }

 public static int getCount() {
 return count;
 }

 private static class Counter {
 private void setCount() {
 count = count + 1;
 }
 }
}

Static Nested Classes
• If you compile and execute the above program, you will get the following result:

Entity e1 = new Entity();
Entity e2 = new Entity();
Entity e3 = new Entity();

System.out.println("Count of Entity objects = "
 + Entity.getCount());

Count of Entity objects = 3

Local Inner Classes
• A local inner class can be instantiated only within the method where it is

defined.
class Process extends Thread {
 private int randomNumber = 0;
 @Override
 public void run() {
 final int bound = 100;
 class NumberGenerator {
 void setRandomNumber() {
 Random random = new Random();
 randomNumber = random.nextInt(bound);
 }
 void printRandomNumber() {
 System. out.println("Random Number: " +
randomNumber);
 }
 }
 NumberGenerator generator = new NumberGenerator();
 generator.setRandomNumber();
 generator.printRandomNumber();
 }
}

It cannot access the local variables of
the enclosing method unless they are
final or effectively final and it
cannot be private

new
Process().start();
new
Process().start();

Random Number: 47
Random Number: 34

Anonymous Inner Class
• Anonymous inner class is a class that has no name and is used if you need to

create a single instance of the class.

• Any parameters needed to create an anonymous object class, are given in
parentheses following name supertype :

Anonymous Inner Class

• In this case:
• operator new creates an object.
• The Comparator() begins definition of anonymous class, similar to:

• Brace ({) begins class definition.

Arrays.sort(people, new Comparator<Person>() {
 @Override

 public int compare(Person p1, Person p2) {
 if (p1.getAge() != p2.getAge())
 return Integer.compare(p1.getAge(), p2.getAge());
 else
 return p1.getName().compareTo(p2.getName());
 }

});

class PersonAgeComparator implements Comparator<Person> { }

Default Methods for Interfaces

• Java 8 enables us to add non-abstract method implementations to interfaces by
utilizing the default keyword. This feature is also known as Extension Methods.

public interface Formula {
 double calculate(int a);

 default double sqrt(int a) {
 return Math.sqrt(a);
 }

}

Anonymous Class and Default Methods

• Interface Formula defines a default method sqrt() which can be accessed
from each formula instance including anonymous objects.

Square root of 100 is 10.0

Formula formula = new Formula() {
 @Override
 public double calculate(int a) {
 return sqrt(a * 5);
 }
};

double result = formula.calculate(20);

System.out.println("Square root of 100 is " + result);

Objects Cloning
• Object Cloning is a process of generating the exact field-to-field copy of object

with the different name.

• The cloned object has its own space in the memory where it copies the content
of the original object.

• For cloning objects in Java you can use clone() method defined in Object
class.

 protected Object clone() throws CloneNotSupportedException

The clone() method
• Example:

public class Person {
 private FullName fullName;
 private int age;

 public Person(FullName fullName, int age) {
 this.fullName = fullName;
 this.age = age;
 }
 public static void main(String[] args) {
 Person person = new Person(new FullName("Mike", "Green"), 25);
 try {
 Person copyOfPerson = (Person) person.clone();
 } catch (CloneNotSupportedException e) {
 e.printStackTrace();
 }
 }
}

class FullName {
 public String firstName;
 public String lastName;

 // constructor
}

The Cloneable Interface
• The program would throw CloneNotSupportedException if we don’t

implement the Cloneable interface.

• A class implements the Cloneable interface to indicate to the
Object.clone() method that it is legal for that method to make a
field-for-field copy of instances of that class.

• The Cloneable is a marker interface, which means it doesn’t has any clone
method specification.

The Cloneable Interface
• Example:

Person person = new Person(new FullName("Mike", "Green"), 25);
Person copyOfPerson = (Person) person.clone();

System.out.println("Original: " + person.fullName.firstName + " " +
 person.fullName.lastName + ", " + person.age);
System.out.println("Cloned: " + copyOfPerson.fullName.firstName + " " +
 copyOfPerson.fullName.lastName + ", " + copyOfPerson.age);

copyOfPerson.fullName.firstName = "Nick";
copyOfPerson.fullName.lastName = "Brown";
copyOfPerson.age = 37;

System.out.println("=========================");

System.out.println("Original: " + person.fullName.firstName + " " +
 person.fullName.lastName + ", " + person.age);
System.out.println("Cloned: " + copyOfPerson.fullName.firstName + " " +
 copyOfPerson.fullName.lastName + ", " + copyOfPerson.age);

Original: Mike Green, 25
Cloned: Mike Green, 25
=========================
Original: Nick Brown, 25
Cloned: Nick Brown, 37

 Deep Copy vs Shallow Copy
• Shallow copy is “default implementation” in Java and if you are not cloning all

the object types (not primitives), then you are making a shallow copy.

• In the Deep copy, we create a clone which is independent of original object and
making changes in the cloned object should not affect original object.

Deep Copy
• Example:

class FullName implements Cloneable {

 // ...
 @Override
 protected Object clone() throws CloneNotSupportedException {
 return super.clone();
 }
}

public class Person implements Cloneable {

 // ...
 @Override
 protected Object clone() throws CloneNotSupportedException {
 Person copyOfPerson = (Person) super.clone();
 copyOfPerson.fullName = (FullName)copyOfPerson.fullName.clone();
 return copyOfPerson;
 }
}

Wrapper Pattern

Non-generic Box class

public class Box {

 private Object obj;

 public void set(Object obj) { this.obj = obj; }

 public Object get() { return obj; }

}

Since its methods accept or return an Object, you are free to pass in whatever you want,
provided that it is not one of the primitive types

There is no way to verify, at compile time, how the class is used

Wrapper Pattern

public class Appl {

 public static void main(String[] args) {

 String text = "Hello World";

 Box box = new Box();

 box.set(text);

 Integer i = (Integer) box.get();

 }

}

One part of the code may place an Integer in the box and expect to get Integers out of it,
while another part of the code may mistakenly pass in a String, resulting in a runtime
error.

Runtime Error

Wrapper Pattern

Wrapper (or Decorator) is one of the most important design patterns.

One class takes in another class, both of which extend the same abstract class, and adds
functionality

public class WrapperBox {

 private Box box = new Box();

 public void set(String text) { this.box.set(text); }

 public String get() { return box.get(); }

}

Wrapper Pattern

public class Appl {

 public static void main(String[] args) {

 String text = "Hello World";

 WrapperBox box = new WrapperBox();

 box.set(text);

 Integer i = (Integer) box.get();

 }

}

The basic idea of a wrapper is to call-forward to an underlying object, while simultaneously
allowing for new code to be executed just before and/or just after the call

Compile Error

Generic in Java

Generics, introduced in Java SE 5.0
• A generic type is a generic class or interface that is parameterized over types.
• Generics add a way to specify concrete types to general purpose classes and methods that

operated on Object before.
• With Java's Generics features you can set the type for classes.

Generic class is defined with the following format:
class Name<T1, T2, ..., Tn> { /* ... */ }

The type parameter section, delimited by angle brackets (<>), follows the class
name.

Generic in Java

To update the Box class to use generics, you create a generic type declaration by
changing the code

public class Box
to

public class Box<T>
This introduces the type variable, T, that can be used anywhere inside the class.
To instantiate this class, use the new keyword, as usual, but place <Integer>
between the class name and the parenthesis:

Box<Integer> integerBox = new Box<Integer>();

Generic in Java

public class Box<T> {
 // T stands for "Type".
 private T t;
 public void set(T t) { this.t = t; }
 public T get() { return t; }
}

All occurrences of Object are replaced by T.
A type variable can be any non-primitive type you specify: any class type, any
interface type, any array type, or even another type variable.
The same technique can be applied to create generic interfaces.

Generic in Java

public class Appl {

 public static void main(String[] args) {

 String text = "Hello World";

 Box<String> box = new Box<String>();

 box.set(text);

 Integer i = (Integer) box.get();

 }

}

Generics also provide compile-time type safety that allows programmers to catch invalid
types at compile time.

Compile Error

Type Parameter Naming Conventions

• The most commonly used type parameter names are:

• E – element (used extensively by the Java Collections Framework)
• K – key
• N – number
• T – type
• V – value
• S, U, V etc. – 2nd, 3rd, 4th types

Generic in Java

Java method can be parametrized, too:

<T> getRandomElement(List<T> list) { … }

As with class definitions, you often want to restrict the type parameter in the
method.

For example, a method which takes a list of Vehicles and returns the fastest
vehicle in the list can have the following type.

<T extends Vehicle> T getFastest(List<T> list) {…}

Bounded Arguments
• Consider a simple drawing application to draw shapes (circles, rectangles,

…)

Shape

draw()

Circle Rectangle

Canvas

draw(Shape shape)
drawAll(List<Shape>
shapes)

Limited to
List<Shape>

Bounded Arguments
• A List of any kind of Shape …

• Shape is the upper bound of the wildcard.

a Bounded
Template Arguments

<T extends Shape> void drawAll(List<T> shapes)

Template Arguments
class Box<T extends Number> {
 T[] nums;

 Box(T[] о) { nums = о; }

 double average() {
 double sum = 0.0;
 for(int i=0; i < nums.length; i++) {
 sum += nums[i].doubleValue();
 }
 return sum/nums.length;
 }

 boolean sameAvg(Box<T> obj) {
 return average() == obj.average();
 }
}

Integer inums[] = {1, 2 , 3 , 4, 5};
Double dnums[] = {1.0, 2.0, 3.0, 4.0, 5.0};

Box<Integer> iBox = new Box<Integer>(inums);
Box<Double> dBox = new Box<Double>(dnums);

if(iBox.sameAvg(dBox))
 System.out.println("Same");
else
 System.out.println("Not same");

Won’t compile!

Template Arguments

• The “collection of unknown” is a collection whose element type
matches anything – template arguments.

boolean sameAvg(Box<? extends Number> obj) {
 if(average() == obj.average())
 return true;
 return false;
}

More fun with Generics
public void pushAll(Collection<? extends E> collection) {
 for (E element : collection) {
 this.push(element);
 }
}

public List<E> sort(Comparator<? super E> comp) {
 List<E> list = this.asList();
 Collections.sort(list, comp);
 return list;
}

All elements must be
at least an E

The comparison method
must require at most an E

Generic in Java

Disadvantages
• Generic-fields can not be static.
• Static methods can not have generic parameters or use generic fields.
• Can not be made an explicit call to the constructor generic-type:

class Optional<T> {
 T value = new T();

}

The compiler does not know what constructor can be caused and the
amount of memory to be allocated when an object.

Wrapper Classes
• The wrapper classes are objects encapsulating primitive Java types.
• Each Java primitive has a corresponding wrapper:

Autoboxing and Unboxing
• After Java 5 the conversion primitive value to a wrapper object and from a

wrapper object to a primitive value can be done automatically by using
features called autoboxing :

and unboxing :

Box<Integer> number = new Box<>();

number.set(1); // autoboxing
Integer val = 2; // autoboxing

Integer object = new Integer(1);

int val1 = getSquareValue(object); //unboxing
int val2 = object; //unboxing

public static int getSquareValue(int i) {
 return i*i;
}

Practical part
1. Suppose we have the class Car.

Create public inner class
CarBuilder inside of Car class
correspond to the next class
diagram.
Create a car with four different
parameters and print info about
this car and its parameters

:

Practical part
2. Suppose we have the next diagram

Create Wrapper class which should wrap any objects which implements Shape interface

For example,

:

 :

Homework
Task 1

• Develop a FullName class with the firstName and lastName fields of type String, which
would correspond to the principle of encapsulation.

• Create an abstract Person class with fullName field of type FullName and age of type
int.

• In the Person class, create a constructor
public Person(FullName fullName, int age)
and a method called info(), which will return a string in the format

"First name: <firstName>, Last name: <lastName>, Age: <age>"

and an abstract public activity() method with a String return type.

Homework
• Develop a Student class with an int field that matches the course the student is taking.

• In the Student class, create a constructor with parameters to initialize all fields in the
class, and override the info() method (which would also add course information to
the previous line), and the activity() method from the Person class. The activity()
method should return a string value that is the type of activity for the corresponding
Person subtype, for example for a student - this could be the value "I study at
university".

• In the main(...) method, create two instances of the Student class and output
information about them by calling the appropriate methods info() and activity().

Homework
Task 2

• Create Wrapper<T> class with private field of T type which is called value.

• In Wrapper class create public constructor and setValue and getValue methods for
value field.

• Create three objects of the Wrapper type: first object should be wrapper for int type,
second – for String, third - for boolean.

• Print all three values in the console using method getValue from Wrapper class.

Thanks for
attention!

IT Academy

