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What are Sockets?

Sockets provide a common interface to the
various protocols supported by networks.

They allow you to establish connections
between machines to send and receive data.

Sockets support the simultaneous
connection of multiple clients to a single
server machine.
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How do Sockets Function?

There are several modes of operation available for sockets.

A very common mode is to establish a socket listener that
listens on some port, say 4040, for connection requests.

When a socket client, from another process or a remote
computer, requests a connection on port 4040, the listener
spawns a hew thread that starts up a socket server on a new
port, say 5051.

From that time on the socket client and socket server
communicate on port 5051. Either one can send data, in the
form of a group of bytes, to the other.

Meanwhile the listener goes back to listening for connection
requests on port 4040.
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Socket Data Transfer

The receiving socket, either client or server, has a buffer that
stores bytes of data until the receiver thread reads them.

If the receiver buffer is full, the sender thread will block on

a send call until the receiver reads some of the data out of
the buffer.

For this reason, it is a good idea to assign a thread in the
receiver o empty the buffer and enqueue the data for a worker
thread to digest.

If the receiver buffer becomes full dur'ina a send, the send
request will return having sent less than the requested
number of bytes.

If the receiving buffer is empty, a read request will block.

If the receiving buffer has data, but less than the number of
byT%sbqequesTed by a read, the call will return with the bytes
available.
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Basic .Net Network Objects

TCPListener
TCPListener(port)
AcceptTcpClient()
AcceptSocket()
Start()

Stop()

Socket
Send(byte[], size, socketFlags)
Receive(byte[], size, socketFlags)
Close()
ShutDown(SocketShutDown)



More Network Programming Objects

TCPClient

TCPClient()

Connect(IPAddress, port)

GetStream() You read and write

Close() using the returned

orkStream object
J

NetworkStream

NetworkStream(Socket)
Read(byte[], of fset, size)
Write(byte[], offset, size)



Simple Socket Client S

TcpClient tcpc = new TcpClient(); name <J
Byte[] read = new Byte[32]; // read buffer
String server = args[0]; // server name

// Try to connect to the server
tcpc.Connect (server, 2048);

// Get a NetworkStream object
Stream s;
s = tcpc.GetStream() ;

nects to this
server port

// Read the stream and convert it to ASII
int bytes = s.Read(read, 0, read.Length);
String Time = Encoding.ASCII.GetString(read);

// Display the data
Console.WriteLine ("\n Received {0} bytes", bytes);

Console.WritelLine (" Current date and time is: {0}", Time):;

tcpc.Close();



Simple Socket Server

Tcplistener tcpl = new TcplListener (2048); // listen on port 2048

tcpl.Start ()

while (true)

{

// Accept will block until someone connects
Socket s = tcpl.AcceptSocket();

// Get current date and time then concatenate it into a string
now = DateTime.Now;
strDateline = now.ToShortDateString/()

+ " " + now.ToLongTimeString() ;

// Convert the string to a Byte Array and send it

Byte[] byteDatelLine = ASCII.GetBytes(strDatelLine.ToCharArray()):;
s.Send (byteDatelLine, byteDateline.Length, 0);

s.Close() ;

Console.WritelLine ("\n Sent {0}", strDateline):;
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Multi-threaded Server

If we want to support concurrent clients, the
server must spawn a thread for each new
client.

C# Thread class makes that fairly simple.

Create a class that provides a non-static
processing function. This is the code that
serves each client.

Each time the TCPListener accepts a client it
returns a socket. Pass that to the thread
when it is constructed, and start the thread.



Define Thread's Processing

class threadProc

{

private Socket sock = null;

public threadProc (Socket sock)
{
_sock = sock;
}
public void proc()
{
for (int 1i=0; 1i<20; i++)
{
// Get the current date and time then concatenate it
// into a string
DateTime now = DateTime.Now;
string strDatelLine = now.ToShortDateString() + " "
+ now.ToLongTimeString () ;

// Convert the string to a Byte Array and send it
Byte[] byteDateline = Encoding.ASCII.GetBytes (strDatelLine.ToCharArray());
_sock.Send (byteDateLine, byteDateLine.Length, 0);
Console.Write("\n Sent {0}", strDateline);
Thread.Sleep (1000) ; // wait for one second just for demo
}
string QuitMessage = "Quit";
Byte[] byteQuit = Encoding.ASCII.GetBytes (QuitMessage.ToCharArray()):
_sock.Send (byteQuit, byteQuit.Length, 0);
while (_sock.Connected)
Thread.Sleep (100);
_sock.Close();

}



Server Spawns Threads to Handle
New Clients with threadProc.proc()

// listen on port 2048
TcpListener tcpl = new TcplListener (2048);
tcpl.Start () ;

while (true)

{

// Accept will block until someone connects
Socket s = tcpl.AcceptSocket ()

threadProc tp = new threadProc(s);

// pass threadProc.proc () function reference to
// ThreadStart delegate

Thread t = new Thread(new ThreadStart (tp.proc)):;
t.Start ()



Clients now Wait for Server to Complete

// Try to connect to the server
tcpc.Connect (server, 2048);

// Get the NetworkStream object
Stream s;
s = tcpc.GetStream() ;

while (true)

{
// Read the stream and convert it to ASII

int bytes = s.Read(read, 0, read.Length);
String TSvrMsg = Encoding.ASCII.GetString(read);
TSrvMsg = TSrvMsg.Remove (bytes, TSrvMsg.Length-bytes) ;

// Display the data

if (TSrvMsg == "Quit")

{
Console.Write ("\n Quitting");
break;

}
Console.WritelLine (" Server date and time is: {0}",
TSrvMsqg) ;

}
tcpc.Close();



Talk Protocol

The hardest part of a client/server socket
communication design is o control the active
participant

If single-threaded client and server both talk at the
same time, their socket buffers will fill up and they
both will block, e.g., deadlock.

If they both listen at the same time, again there is
deadlock.

Often the best approach is to use separate send and
receive threads

two unilateral communication channels

The next slide shows how to safely use bilateral
communication.



Bilateral Channel Talk-Listen Protocol
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Message Length

Another vexing issue is that the receiver may
not know how long a sent message is.

so the receiver doesn't know how many bytes
to pull from the stream to compose a message.

Often, the communication design will arrange
to use message delimiters, fixed length
messages, or message headers that carry the
message length as a parameter.



Message Framing

There are three solutions to this problem:
Use fixed length messages - rarely useful
Use fixed length message headers

Encode message body length in header

Reader pulls header, parses to find length of rest
of message and pulls it.

Use message termination sentinals
<msg>body of message</msg>
Reader reads a character at a time out of channel
Adds character to message

Scans message from back looking for </msg> to
conclude message extraction.



They're Everywhere

Virtually every network and internet
communication method uses sockets, often in
a way that is invisible o an application
designer.

Browser/server

ftp

SOAP

Network applications



Sockets

The End



