Net Sockets

Jim Fawcett
CSE681 - Software Modeling &

Analysis
Fall 2008

References

www.msdn.microsoft.com/library

Net Development/.Net Framework SDK/

Net Framework/Reference/ClassLibrary/
System.Net.Sockets

http://www.dotnet junkies.com/quickstart/howto/
doc/TCPUDP/DateTimeClient.aspx

C# NetworkProgramming, Richard Blum, Sybex,
2003

Win32 Sockets, Jim Fawcett, Fall 2002

What are Sockets?

Sockets provide a common interface to the
various protocols supported by networks.

They allow you to establish connections
between machines to send and receive data.

Sockets support the simultaneous
connection of multiple clients to a single
server machine.

Socket Logical Structure

recv buffer

¢

Socket

bytes

Socket

bytes

>

recv buffer

How do Sockets Function?

There are several modes of operation available for sockets.

A very common mode is to establish a socket listener that
listens on some port, say 4040, for connection requests.

When a socket client, from another process or a remote
computer, requests a connection on port 4040, the listener
spawns a hew thread that starts up a socket server on a new
port, say 5051.

From that time on the socket client and socket server
communicate on port 5051. Either one can send data, in the
form of a group of bytes, to the other.

Meanwhile the listener goes back to listening for connection
requests on port 4040.

Socket Client, Server, and Listener

Socket Client #1

send and receive

- on port 5050 — Socket Server #1
e Socket Server #2
step 3
A
send and receive
on port 5051 '
Creaté new

Socket Client #2

listen on ljjort 4040

step 1

step 2

Thre_zad

.......,.

Socket Listener

Client/Server Configuration

Client

Client

Socket

data

Server Main Thread

Socket Receiver Thread

port

listener
port

M o —— [[T[]

use socket
data

Create
Thread

listener
socket

Socket Data Transfer

The receiving socket, either client or server, has a buffer that
stores bytes of data until the receiver thread reads them.

If the receiver buffer is full, the sender thread will block on

a send call until the receiver reads some of the data out of
the buffer.

For this reason, it is a good idea to assign a thread in the
receiver o empty the buffer and enqueue the data for a worker
thread to digest.

If the receiver buffer becomes full dur'ina a send, the send
request will return having sent less than the requested
number of bytes.

If the receiving buffer is empty, a read request will block.

If the receiving buffer has data, but less than the number of
byT%sbqequesTed by a read, the call will return with the bytes
available.

Non-Blocking Communication

Process #1

function sending
data to
Process #2

sender

receiver

interprocess
communication

Process #2

receiver thread

>

processing thread

FIFO queue

function receiving
data from
Process #1

Basic .Net Network Objects

TCPListener
TCPListener(port)
AcceptTcpClient()
AcceptSocket()
Start()

Stop()

Socket
Send(byte[], size, socketFlags)
Receive(byte[], size, socketFlags)
Close()
ShutDown(SocketShutDown)

More Network Programming Objects

TCPClient

TCPClient()

Connect(IPAddress, port)

GetStream() You read and write

Close() using the returned

orkStream object
J

NetworkStream

NetworkStream(Socket)
Read(byte[], of fset, size)
Write(byte[], offset, size)

Simple Socket Client S

TcpClient tcpc = new TcpClient(); name <J
Byte[] read = new Byte[32]; // read buffer
String server = args[0]; // server name

// Try to connect to the server
tcpc.Connect (server, 2048);

// Get a NetworkStream object
Stream s;
s = tcpc.GetStream() ;

nects to this
server port

// Read the stream and convert it to ASII
int bytes = s.Read(read, 0, read.Length);
String Time = Encoding.ASCII.GetString(read);

// Display the data
Console.WriteLine ("\n Received {0} bytes", bytes);

Console.WritelLine (" Current date and time is: {0}", Time):;

tcpc.Close();

Simple Socket Server

Tcplistener tcpl = new TcplListener (2048); // listen on port 2048

tcpl.Start ()

while (true)

{

// Accept will block until someone connects
Socket s = tcpl.AcceptSocket();

// Get current date and time then concatenate it into a string
now = DateTime.Now;
strDateline = now.ToShortDateString/()

+ " " + now.ToLongTimeString() ;

// Convert the string to a Byte Array and send it

Byte[] byteDatelLine = ASCII.GetBytes(strDatelLine.ToCharArray()):;
s.Send (byteDatelLine, byteDateline.Length, 0);

s.Close() ;

Console.WritelLine ("\n Sent {0}", strDateline):;

File Edit WVew Project Buld Debug Tools Window Help ! EEE LSS Y >
RN R = FEBER| - @v » Debug v @ T .Eé‘ﬁgvv
E % b oar =2 | 6% %%. oy 4 G 5 | vsi/default.him -l e 1 &
:;], Object Browser | Start Page client.cslsew s | 4P X l_Splution_Explg(e[-clign_t 2 x|
1 _ - =
| S SO LA T E % (=2
R1[82 socketoemo. Cler = [=®mainistring ara: = EIE S }
g &) public static void Main(String[] args) u §olutlon socketDemo (2prolec‘6'\3
g { 21l = 58 client 9
o { =
3 Console.Write("yn Demonstrating Basic TCPClient Operation "): + ﬂiz;eirfonces 2
Console.Write("\n \n"): 2] Assémb[ylnfo s
[#] dlient.cs —
TepClient toepe = new TepClient () server
Byte[] read = new Byte[32]: =\ References
App.ico
if (args.Length '= 1) l_"_‘]nssemb[ylnfo.cs
{ [#] server.cs
Console.WriteLine("\n Please specify a server nawe in the commwand line\nin"):
. Letucns SE891),5u2002\Lecture7\soc -(oOf x|
Demonstrating Basic T lient Operation
String server = args[0]:; = =
Received 19 hytes
Verify that the server exists Current date and time is: 06,/29,/2002 15:15:43
if (Dns.GetHostByNawme (server) == null)
{ Press Return to exit
Console.WriteLine("\n Cannot find server: {0}\n\n", server):
return;
}
try {
// Try to connect to the s
tope.Connect (server, 2048);
/{ Get the stream
Stream s; Demonstrating Basic TCPServer Operation
s = tcpoe.GetStrearnm() = =
Waiting for clients to connect
Press Ctrl+c to Quit...
Read the stream and convert it to 51T
int bytes = s.Read(read, 0, read.Length): Sent B6,29,2082 15:15:14
String Time = Encoding.ASCII.GetString(read): Sent 86,29/20082 15:15:43
Display the data
Console.WriteLine ("\n Received {0} bytes", bytes):
Console.WriteLine (" Current date and time is: {0}", Tine): 4 L4
tepe.Close ()
e
catch (SocketException e)
{
Console.lWriteline (e.Message) ;
vI
I \
Rl |__Ei
| Output 2 x||4q] | 2
¥ TaskList [E] Output ,@ Find Symbol Results E%Inde‘ Results for function pointers ‘a‘:'vearch Results | a 5 \@ @ \2] @l |
i'mBCliId succeeded Ln 64 Col 1 Cch1 ‘[:\ ‘;&S}
iastartl“ & P S0 L) ”_j Today 1! l Sticky...] _J;JC:\SU\...I \/’client-...l mCMD.EXEl @Micros...] @Quicks...l [EMicros... asu. | CEGOE HEGERDHE a2

Yisual ,i"az*‘fc

File Edit View Project Buld Debug Tools Window Help ! EEE S S Y

e R YR = = | % By oy ooe - B » Debug v T b

FE R b o | € Z2 A4%%%. Q) (31 B | vsiidefault.htm - ‘ A .
;;ﬂ Object Browser | Start Page | client.cs = server.cs | 4 b x || Solution Explorer - server & X I~}
B IggsocketDemo.Server lJ !:‘Main() v =] 3| &
g = public static void Main() ﬂ lop Solution 'socketDemo’ (2 projeq| 2
o A1/ = E client b
g ¢ =

Console.Write("\n Demonstrating Basic TCPServer Operation "): 3 @

|

\n");

Console.Write("\n

DateTime now;
String strDatelLine;
Encoding ASCII = Encoding.ASCII;

Thread.CurrentThread.CurrentCulture = Culturelnfo.InvariantCulture;

try

{
TcpListener tepl = new TeplListener (2048); // listen on port 2048

tepl.Start ()

Console.WriteLine (" Waiting for clients to connect');

Console.WriteLine (" Press Ctrl+4c to Quit..."):
while (true)
{
// Accept will block until sSomeone connects
Socket s = tepl.icceptSocket():
Get the current date and time then concatenate it
into a string
now = DateTime.Now;
strDateline = now.ToShortDateString() + " " + now.ToLongTineStringi():

string to a Byte Array and send it

/¢ Convert the
Byte[] byteDateLine = ASCII.GetBytes(strDateline.ToChariArray()):
s.%3end(byteDatelLine, byteDateLine.Length, 0);

s.Close():

Console.WriteLine("yn Sent {0}", strDateline):
i
¥
catch (SocketException socketError)
{

if (socketError.ErrorCode == 10048)
{
Console.WriteLine("\n

Console.WriteLine ("

Connection to this port failed.™);

[#] AssemblyInfo.cs
[#] dlient.cs

server

‘=) References

[#] assemblyInfo.cs
|#] server.cs

=10/ x|

SU\CSE891%,5u2002'\Lecture7\socki

Demonstrating Basic TCPClient Operation

Received 19 hytes

Current date and time is: B6,29,20082 15:15:43

Press Return to exit

There is another server is listening on this port.\n\in"):

Demonstrating Basic TCPServer Operation

Waiting for clients to connect
Press Ctrl+c to Quit...

Sent 06,29,2002 15:15:14
Sent 86/29,2082 15:15:43

| ©

2 x| | »f

| Output

[TaskList [E] Output 9@ Find Symbol Results —__9"] Index Resul

for function pointers | a Search Results |

BEFEHS DAl

I | tn30 Col 30 ch30

\'Wéﬂild succeeded

i start

™ & G P S0 L) ”H Today 1! |

Sticky.‘.l ‘_5~|C:\,SU'\...| \/’server...l [jCMD.EXE] @Micros..‘l @QuickS...I Micros...l

CEGCH W EBFROPHE a2t

Multi-threaded Server

If we want to support concurrent clients, the
server must spawn a thread for each new
client.

C# Thread class makes that fairly simple.

Create a class that provides a non-static
processing function. This is the code that
serves each client.

Each time the TCPListener accepts a client it
returns a socket. Pass that to the thread
when it is constructed, and start the thread.

Define Thread's Processing

class threadProc

{

private Socket sock = null;

public threadProc (Socket sock)
{
_sock = sock;
}
public void proc()
{
for (int 1i=0; 1i<20; i++)
{
// Get the current date and time then concatenate it
// into a string
DateTime now = DateTime.Now;
string strDatelLine = now.ToShortDateString() + " "
+ now.ToLongTimeString () ;

// Convert the string to a Byte Array and send it
Byte[] byteDateline = Encoding.ASCII.GetBytes (strDatelLine.ToCharArray());
_sock.Send (byteDateLine, byteDateLine.Length, 0);
Console.Write("\n Sent {0}", strDateline);
Thread.Sleep (1000) ; // wait for one second just for demo
}
string QuitMessage = "Quit";
Byte[] byteQuit = Encoding.ASCII.GetBytes (QuitMessage.ToCharArray()):
_sock.Send (byteQuit, byteQuit.Length, 0);
while (_sock.Connected)
Thread.Sleep (100);
_sock.Close();

}

Server Spawns Threads to Handle
New Clients with threadProc.proc()

// listen on port 2048
TcpListener tcpl = new TcplListener (2048);
tcpl.Start () ;

while (true)

{

// Accept will block until someone connects
Socket s = tcpl.AcceptSocket ()

threadProc tp = new threadProc(s);

// pass threadProc.proc () function reference to
// ThreadStart delegate

Thread t = new Thread(new ThreadStart (tp.proc)):;
t.Start ()

Clients now Wait for Server to Complete

// Try to connect to the server
tcpc.Connect (server, 2048);

// Get the NetworkStream object
Stream s;
s = tcpc.GetStream() ;

while (true)

{
// Read the stream and convert it to ASII

int bytes = s.Read(read, 0, read.Length);
String TSvrMsg = Encoding.ASCII.GetString(read);
TSrvMsg = TSrvMsg.Remove (bytes, TSrvMsg.Length-bytes) ;

// Display the data

if (TSrvMsg == "Quit")

{
Console.Write ("\n Quitting");
break;

}
Console.WritelLine (" Server date and time is: {0}",
TSrvMsqg) ;

}
tcpc.Close();

Talk Protocol

The hardest part of a client/server socket
communication design is o control the active
participant

If single-threaded client and server both talk at the
same time, their socket buffers will fill up and they
both will block, e.g., deadlock.

If they both listen at the same time, again there is
deadlock.

Often the best approach is to use separate send and
receive threads

two unilateral communication channels

The next slide shows how to safely use bilateral
communication.

Bilateral Channel Talk-Listen Protocol

Server’s Client Handler

@R freceive done fextract token

/send token
fextract message fsend message

/send token

/send token

sending

fextract token

/send message fextract message

/send done

o

Each connection channel)
contains one “sending” token. Client

Message Length

Another vexing issue is that the receiver may
not know how long a sent message is.

so the receiver doesn't know how many bytes
to pull from the stream to compose a message.

Often, the communication design will arrange
to use message delimiters, fixed length
messages, or message headers that carry the
message length as a parameter.

Message Framing

There are three solutions to this problem:
Use fixed length messages - rarely useful
Use fixed length message headers

Encode message body length in header

Reader pulls header, parses to find length of rest
of message and pulls it.

Use message termination sentinals
<msg>body of message</msg>
Reader reads a character at a time out of channel
Adds character to message

Scans message from back looking for </msg> to
conclude message extraction.

They're Everywhere

Virtually every network and internet
communication method uses sockets, often in
a way that is invisible o an application
designer.

Browser/server

ftp

SOAP

Network applications

Sockets

The End

