
.Net Sockets

Jim Fawcett
CSE681 – Software Modeling &

Analysis
Fall 2008

References
■ www.msdn.microsoft.com/library

■ .Net Development/.Net Framework SDK/
■ .Net Framework/Reference/ClassLibrary/

▪ System.Net.Sockets

■ http://www.dotnetjunkies.com/quickstart/howto/
doc/TCPUDP/DateTimeClient.aspx

■ C# NetworkProgramming, Richard Blum, Sybex,
2003

■ Win32 Sockets, Jim Fawcett, Fall 2002

What are Sockets?
■ Sockets provide a common interface to the

various protocols supported by networks.

■ They allow you to establish connections
between machines to send and receive data.

■ Sockets support the simultaneous
connection of multiple clients to a single
server machine.

Socket Logical Structure

How do Sockets Function?
■ There are several modes of operation available for sockets.

■ A very common mode is to establish a socket listener that
listens on some port, say 4040, for connection requests.

■ When a socket client, from another process or a remote
computer, requests a connection on port 4040, the listener
spawns a new thread that starts up a socket server on a new
port, say 5051.

■ From that time on the socket client and socket server
communicate on port 5051. Either one can send data, in the
form of a group of bytes, to the other.

■ Meanwhile the listener goes back to listening for connection
requests on port 4040.

Socket Client, Server, and Listener

Client/Server Configuration

Socket Data Transfer
■ The receiving socket, either client or server, has a buffer that

stores bytes of data until the receiver thread reads them.
■ If the receiver buffer is full, the sender thread will block on

a send call until the receiver reads some of the data out of
the buffer.

■ For this reason, it is a good idea to assign a thread in the
receiver to empty the buffer and enqueue the data for a worker
thread to digest.

■ If the receiver buffer becomes full during a send, the send
request will return having sent less than the requested
number of bytes.

■ If the receiving buffer is empty, a read request will block.

■ If the receiving buffer has data, but less than the number of
bytes requested by a read, the call will return with the bytes
available.

Non-Blocking Communication

Basic .Net Network Objects
■ TCPListener

■ TCPListener(port)
■ AcceptTcpClient()
■ AcceptSocket()
■ Start()
■ Stop()

■ Socket
■ Send(byte[], size, socketFlags)
■ Receive(byte[], size, socketFlags)
■ Close()
■ ShutDown(SocketShutDown)

More Network Programming Objects

■ TCPClient
■ TCPClient()
■ Connect(IPAddress, port)
■ GetStream()
■ Close()

■ NetworkStream
■ NetworkStream(Socket)
■ Read(byte[], offset, size)
■ Write(byte[], offset, size)

You read and write
using the returned
NetworkStream object

Simple Socket Client
 TcpClient tcpc = new TcpClient();
 Byte[] read = new Byte[32]; // read buffer
 String server = args[0]; // server name

// Try to connect to the server
 tcpc.Connect(server, 2048);

// Get a NetworkStream object
 Stream s;
 s = tcpc.GetStream();

// Read the stream and convert it to ASII
 int bytes = s.Read(read, 0, read.Length);
 String Time = Encoding.ASCII.GetString(read);

// Display the data
 Console.WriteLine("\n Received {0} bytes", bytes);
 Console.WriteLine(" Current date and time is: {0}", Time);

 tcpc.Close();

Connects to
server with this
name

Connects to this
server port

Simple Socket Server
 TcpListener tcpl = new TcpListener(2048); // listen on port 2048

 tcpl.Start();

 while (true)
 {
 // Accept will block until someone connects
 Socket s = tcpl.AcceptSocket();

 // Get current date and time then concatenate it into a string
 now = DateTime.Now;
 strDateLine = now.ToShortDateString()
 + " " + now.ToLongTimeString();

 // Convert the string to a Byte Array and send it
 Byte[] byteDateLine = ASCII.GetBytes(strDateLine.ToCharArray());
 s.Send(byteDateLine, byteDateLine.Length, 0);
 s.Close();
 Console.WriteLine("\n Sent {0}", strDateLine);
 }

Multi-threaded Server
■ If we want to support concurrent clients, the

server must spawn a thread for each new
client.

■ C# Thread class makes that fairly simple.
■ Create a class that provides a non-static

processing function. This is the code that
serves each client.

■ Each time the TCPListener accepts a client it
returns a socket. Pass that to the thread
when it is constructed, and start the thread.

Define Thread’s Processing
 class threadProc
 {
 private Socket _sock = null;

 public threadProc(Socket sock)
 {
 _sock = sock;
 }
 public void proc()
 {
 for(int i=0; i<20; i++)
 {
 // Get the current date and time then concatenate it
 // into a string
 DateTime now = DateTime.Now;
 string strDateLine = now.ToShortDateString() + " "
 + now.ToLongTimeString();

 // Convert the string to a Byte Array and send it
 Byte[] byteDateLine = Encoding.ASCII.GetBytes(strDateLine.ToCharArray());
 _sock.Send(byteDateLine, byteDateLine.Length, 0);
 Console.Write("\n Sent {0}", strDateLine);
 Thread.Sleep(1000); // wait for one second just for demo
 }
 string QuitMessage = "Quit";
 Byte[] byteQuit = Encoding.ASCII.GetBytes(QuitMessage.ToCharArray());
 _sock.Send(byteQuit, byteQuit.Length, 0);
 while(_sock.Connected)
 Thread.Sleep(100);
 _sock.Close();
 }
 }

Server Spawns Threads to Handle
New Clients with threadProc.proc()

// listen on port 2048
 TcpListener tcpl = new TcpListener(2048);
 tcpl.Start();

 while (true)
 {
 // Accept will block until someone connects
 Socket s = tcpl.AcceptSocket();

 threadProc tp = new threadProc(s);

 // pass threadProc.proc() function reference to
 // ThreadStart delegate

 Thread t = new Thread(new ThreadStart(tp.proc));
 t.Start();
 }

Clients now Wait for Server to Complete
 // Try to connect to the server
 tcpc.Connect(server, 2048);

 // Get the NetworkStream object
 Stream s;
 s = tcpc.GetStream();

 while(true)
 {
 // Read the stream and convert it to ASII
 int bytes = s.Read(read, 0, read.Length);
 String TSvrMsg = Encoding.ASCII.GetString(read);
 TSrvMsg = TSrvMsg.Remove(bytes,TSrvMsg.Length-bytes);

 // Display the data
 if(TSrvMsg == "Quit")
 {
 Console.Write("\n Quitting");
 break;
 }
 Console.WriteLine(" Server date and time is: {0}",

TSrvMsg);
 }
 tcpc.Close();

Talk Protocol
■ The hardest part of a client/server socket

communication design is to control the active
participant

■ If single-threaded client and server both talk at the
same time, their socket buffers will fill up and they
both will block, e.g., deadlock.

■ If they both listen at the same time, again there is
deadlock.

■ Often the best approach is to use separate send and
receive threads

■ two unilateral communication channels
■ The next slide shows how to safely use bilateral

communication.

Bilateral Channel Talk-Listen Protocol

Message Length
■ Another vexing issue is that the receiver may

not know how long a sent message is.

■ so the receiver doesn’t know how many bytes
to pull from the stream to compose a message.

■ Often, the communication design will arrange
to use message delimiters, fixed length
messages, or message headers that carry the
message length as a parameter.

Message Framing
■ There are three solutions to this problem:

■ Use fixed length messages – rarely useful
■ Use fixed length message headers

■ Encode message body length in header
■ Reader pulls header, parses to find length of rest

of message and pulls it.
■ Use message termination sentinals

■ <msg>body of message</msg>
■ Reader reads a character at a time out of channel
■ Adds character to message
■ Scans message from back looking for </msg> to

conclude message extraction.

They’re Everywhere
■ Virtually every network and internet

communication method uses sockets, often in
a way that is invisible to an application
designer.

■ Browser/server
■ ftp
■ SOAP
■ Network applications

Sockets

The End

