A -
> T l }
[¥ 7

{ i

\

¥
i

[Last Time

/
\%ff' Yan ¥

e Toolkits
 Transformations

— Rotation 1s complex in 3D
— Any rotation can be expressed with an axis and angle approach

— Points on the axis do not move anywhere, points off the axis rotate
around 1t

— The axis passes through the origin

02/21/02 (c) 2001 University of

| [/ Today

! 'A‘—'*«f

v.«*‘

* Viewing
* Orthographic viewing
 Homework 3

02/21/02 (c) 2001 University of

" ;"; Modeling 101

* For the moment assume that all geometry consists of points,

lines and faces
* Line: A segment between two endpoints o/.

* Face: A planar area bounded by line segments

— Any face can be triangulated (broken into triangles)

02/21/02 (c) 2001 University of

1 Modeling and OpenGL

* In OpenGL, all geometry 1s specified by stating which type
of object and then giving the vertices that define it

e glBegin(..) ..glEnd()
e glVertex[34] [fdv]

— Three or four components (regular or homogeneous)
— Float, double or vector (eg float[3])

« Chapter 2 of the red book

02/21/02 (c) 2001 University of

(a7 Rendering

{ ‘ A«‘(

* Generate an 1mage showing the contents of some region of
space
— The region is called the view volume, and it is defined by the user
* Determine where each object should go in the image
— Viewing, Projection
« Determine which object 1s in front at each pixel

— Hidden surface elimination, Hidden surface removal, Visibility

 Determine what color it 1s
— Lighting, Shading

02/21/02 (c) 2001 University of

(1t Graphics Pipeline

x\vx ks A ‘[

 Graphics hardware employs a sequence of coordinate
systems

— The location of the geometry is expressed in each coordinate system
in turn, and modified along the way

— The movement of geometry through these spaces is considered a

pipeline
Local World View 3D Display
Coordinate || Coordinate 1 Space 1 Screen 1 Space
Space Space Space
02/21/02 (c) 2001 University of

Local Coordinate Space

It is easiest to define individual objects in a local coordinate
system

— For instance, a cube is easiest to define with faces parallel to the
coordinate axis

* Key i1dea: Object instantiation
— Define an object in a local coordinate system

— Use 1t multiple times by copying it and transforming it into the
global system

— This 1s the only effective way to have libraries of 3D objects, and
such libraries do exist

02/21/02 (c) 2001 University of

& Global Coordinate System

» Everything in the world 1s transformed into one coordinate
system - the global coordinate system

— Actually, some things, like dashboards, may be defined in a different
space, but we’ll ignore that

 Lighting is defined in this space
— The locations, brightness’ and types of lights

* The camera 1s defined with respect to this space

* Some higher level operations, such as advanced visibility
computations, can be done here

02/21/02 (c) 2001 University of

Lty View Space

§
x\vx ks A ‘[

« Associate a set of axes with the image plane

— The image plane is the plane in space on which the image should “appear,”
like the film plane of a camera

— One normal to the image plane
— One up in the image plane
— One right in the image plane

— These three axes define a coordinate system (a rigid body transform of the
world system)

* Some camera parameters are easiest to define in this space
— Focal length, image size

» Depth is represented by a single number in this space
— The “normal to image plane” coordinate

02/21/02 (c) 2001 University of

—
v T l }
[¥ 7
{ ; 4

£ 3D Screen Space

§
x\vx ks A ‘[

* Transform view space into a cube: [-1,1]%[-1,1]X%[-1,1]
— The cube is the canonical view volume
— Parallel sides make many operations easier

 Tasks to do:
— Clipping — decide what you can see
— Rasterization - decide which pixels are covered
— Hidden surface removal - decide what 1s in front
— Shading - decide what color things are

02/21/02 (c) 2001 University of

—

W 7 } }
[¥ 7
{ i

¢ Window Space

* Also called screen space (confusing)
 (Convert the virtual screen into real screen coordinates

— Drop the depth coordinates and translate

* The windowing system takes care of this

02/21/02 (c) 2001 University of

7 ff} }

./ 3D Screen to Window Transtorm

* Typically, windows are specified by an origin, width and
height

— Origin is either bottom left or top left corner, expressed as (x,y) on
the total visible screen on the monitor or in the framebuffer

* This representation can be converted to (x .y) and
(xmax’y max)

* 3D Screen Space goes from (-1,-1,-1) to (1,1,1)
— Lets say we want to leave z unchanged

 What basic transformations will be involved 1n the total
transformation from 3D screen to window coordinates?

02/21/02 (c) 2001 University of

(1,1)

./ 3D Screen to Window Transtorm

\(Xmax’ymax

>

('19'1)

(Xmin’ymin N

)

e How much do we translate?

e How much do we scale?

02/21/02

(c) 2001 University of

1/

02/21/02

(c) 2001 University of

(1 ? 1) (Xmax’ymax
(Xmin’ymin R
) >
(‘xmax ~ X min)/2 0 0 (xmax + X min)/2 _xscreen
O (y max Y min)/ 2 O (y max + Y min)/ 2 Y screen
0 0 1 0 Z sereen
0 0 0 1 11

./ 3D Screen to Window Transtorm

‘ L

| 5/; Orthographic Projection

* Orthographic projection projects all the
points in the world along parallel lines onto
the image plane

— Projection lines are perpendicular to the image
plane

— Like a camera with infinite focal length

* The result is that parallel lines in the world
project to parallel lines in the image, and
ratios of lengths are preserved

— This 1s important in some applications, like
medical imaging and some computer aided design
tasks

02/21/02 (c) 2001 University of

{ M Simple Orthographic Projection

» Specify the region of space that we wish to render as a view volume
» Assume that the viewer is looking in the —z direction, with x to the right
and y up
— Assuming a right-handed coordinate system
e The view volume has:
— anear plane at z=n (Lt
— afar plane at z=f, (f<mn)
— aleft plane at x=/

z
— aright plane at x=7, (r>]) X

— atop plane at y=¢ (r.b,n)
— and a bottom plane at y=>b, (b<¢)

02/21/02 (c) 2001 University of

Rendering the Volume

* To project, map the view volume onto the canonical view

volume

— After that, we know how to map the view volume to the window

* The mapping looks just like the one for screen->window:

—(r+0)/(r-1)

Xoeen | [2/r=1) 0
Vewn | | 0 2/(t-b)
screen - O O
1|0 0
Xscreen - Mview—>screen Xview
02/21/02

0
0

2/(n-1)
0

—(t+D0)/(t-

—(n+f

(c) 2001 University of

)/
)/
!

(n-

b)

/)

X

view

y view
z

view

1

./ General Orthographic Projection

* We could look at the world from any direction, not just
along —z

* The image could rotated in any way about the viewing
direction: x need not be right, and y need not be up

* How can we specify the view under these circumstances?

02/21/02 (c) 2001 University of

Specifying a View

* The location of the image plane in space

— A point in space for the center of the image plane, (¢ ,c €)

* The direction in which we are looking
— Specified as a vector that points back toward the viewer: (d ,d J/a’)
— This vector will be normal to the image plane

* A direction that we want to appear up in the image

— This vector does not have to be perpendicular to »

* We also need the size of the view volume — 7 ¢,b,n,f
— Specified with respect to the image plane, not the world

02/21/02 (c) 2001 University of

Jppp—
0 '7/ } 5‘
[¥ 7
L ! s

1 Getting there...

{ ‘ A«‘(

* We wish to end up 1n the “simple” situation, so we need a
coordinate system with:
— A vector toward the viewer
— One pointing right in the image plane
— One pointing up in the image plane
— The origin at the center of the image
* We must:
— Define such a coordinate system, view space
— Transform points from the world space into view space
— Apply our simple projection from before

02/21/02 (c) 2001 University of

" View Space

\\.V;f N ‘1{

* Given our camera definition:
— Which point is the origin of view space?
— Which direction is the normal to the view plane, n?
— How do we find the right vector, u?
— How do we find the up vector, v?

* Given these points, how do we do the transformation?

02/21/02 (c) 2001 University of

et/ View Space

\\ ,A"*\(
4

* The origin 1s at the center of the image plane: (c,c €)

N

* The normal vector is the normalized viewing direction: n = d

* We know which way up should be, and we know we have a
right handed system, so u=up xn, normalized: g

* We have two vectors 1n a right handed system, so to get the
third: v=nxu

02/21/02 (c) 2001 University of

Jppp—
0 '7/ } 5‘
[¥ 7
L ! s

£ World to View

\\ ,A"*\(
4

* We must translate the world so the origin is at (¢ ,¢ €)
* To complete the transformation we need to do a rotation

 After this rotation:
— The direction u in world space should be the direction (1,0,0) in

view space
— The vector v should be (0,1,0)
— The vector n should be (0,0,1) u u, u, 0
» The matrix that does that is: ve v, v. 0
n. n, n, 0
0 0 0 1
02/21/02 (c) 2001 University of

Jppp—
0 '7/ } 5‘
[¥ 7
L ! s

e All Together

A
* We apply a translation and then a rotation, so the result 1s:
U u, u, offlt 0 0 —c. | [u u, u, ~uec
M A 010 1 0 —¢, v vV, —vee
et noon, on, 00 001 —c | |m nm, n. —nec
0O 0 0 10 0 0 1 0 0 0 1

* And to go all the way from world to screen:

M world —>screen — M view—>screenM world —>view
screen — Mworld —>Screean0rla’
02/21/02 (c) 2001 University of

m—
[?f I/

6 OpenGL and Transformations

L 4

* OpenGL internally stores several matrices that control
viewing of the scene

— The MODELVIEW matrix is intended to capture all the
transformations up to the view space

— The PROJECTION matrix captures the view to screen conversion
* You also specify the mapping from the canonical view
volume into window space
— Directly through function calls to set up the window
« Matrix calls multiply some matrix M onto the current matrix
C, resulting in CM

— Set view transformation first, then set transformations from local to
world space — last one set is first one applied

02/21/02 (c) 2001 University of

OpenGL Camera

* The default OpenGL 1mage plane has u aligned with the x axis, v
aligned with y, and n aligned with z
— Means the default camera looks along the negative z axis
— Makes it easy to do 2D drawing (no need for any view transformation)
« glOrtho (..) sets the view->screen matrix
— Modifies the PROJECTION matrix
e gluLookAt (..) sets the world->view matrix

— Takes an image center point, a point along the viewing direction and an up
vector
— Multiplies a world->view matrix onto the current MODELVIEW matrix

— You could do this yourself, using glMultMatrix (..) with the matrix
from the previous slides

02/21/02 (c) 2001 University of

T

'/ Left vs Right Handed View Space

\v'r"’ .

* You can define u as right, v as up, and n as toward the
viewer: a right handed system u xv=n
— Advantage: Standard mathematical way of doing things
* You can also define u as right, v as up and n as into the
scene: a left handed system vxu=n

— Advantage: Bigger n values mean points are further away

* OpenGL 1s right handed

* Many older systems, notably the Renderman standard
developed by Pixar, are left handed

02/21/02 (c) 2001 University of

