
02/21/02 (c) 2001 University of
Wisconsin, CS559

Last Time

• Toolkits
• Transformations

– Rotation is complex in 3D
– Any rotation can be expressed with an axis and angle approach
– Points on the axis do not move anywhere, points off the axis rotate

around it
– The axis passes through the origin

02/21/02 (c) 2001 University of
Wisconsin, CS559

Today

• Viewing
• Orthographic viewing
• Homework 3

02/21/02 (c) 2001 University of
Wisconsin, CS559

Modeling 101

• For the moment assume that all geometry consists of points,
lines and faces

• Line: A segment between two endpoints
• Face: A planar area bounded by line segments

– Any face can be triangulated (broken into triangles)

02/21/02 (c) 2001 University of
Wisconsin, CS559

Modeling and OpenGL

• In OpenGL, all geometry is specified by stating which type
of object and then giving the vertices that define it

• glBegin(…) …glEnd()
• glVertex[34][fdv]

– Three or four components (regular or homogeneous)
– Float, double or vector (eg float[3])

• Chapter 2 of the red book

02/21/02 (c) 2001 University of
Wisconsin, CS559

Rendering

• Generate an image showing the contents of some region of
space
– The region is called the view volume, and it is defined by the user

• Determine where each object should go in the image
– Viewing, Projection

• Determine which object is in front at each pixel
– Hidden surface elimination, Hidden surface removal, Visibility

• Determine what color it is
– Lighting, Shading

02/21/02 (c) 2001 University of
Wisconsin, CS559

Graphics Pipeline

• Graphics hardware employs a sequence of coordinate
systems
– The location of the geometry is expressed in each coordinate system

in turn, and modified along the way
– The movement of geometry through these spaces is considered a

pipeline

Local
Coordinate

Space

World
Coordinate

Space

View
Space

3D
Screen
Space

Display
Space

02/21/02 (c) 2001 University of
Wisconsin, CS559

Local Coordinate Space

• It is easiest to define individual objects in a local coordinate
system
– For instance, a cube is easiest to define with faces parallel to the

coordinate axis
• Key idea: Object instantiation

– Define an object in a local coordinate system
– Use it multiple times by copying it and transforming it into the

global system
– This is the only effective way to have libraries of 3D objects, and

such libraries do exist

02/21/02 (c) 2001 University of
Wisconsin, CS559

Global Coordinate System

• Everything in the world is transformed into one coordinate
system - the global coordinate system
– Actually, some things, like dashboards, may be defined in a different

space, but we’ll ignore that
• Lighting is defined in this space

– The locations, brightness’ and types of lights
• The camera is defined with respect to this space
• Some higher level operations, such as advanced visibility

computations, can be done here

02/21/02 (c) 2001 University of
Wisconsin, CS559

View Space
• Associate a set of axes with the image plane

– The image plane is the plane in space on which the image should “appear,”
like the film plane of a camera

– One normal to the image plane
– One up in the image plane
– One right in the image plane
– These three axes define a coordinate system (a rigid body transform of the

world system)
• Some camera parameters are easiest to define in this space

– Focal length, image size
• Depth is represented by a single number in this space

– The “normal to image plane” coordinate

02/21/02 (c) 2001 University of
Wisconsin, CS559

3D Screen Space

• Transform view space into a cube: [-1,1]×[-1,1]×[-1,1]
– The cube is the canonical view volume
– Parallel sides make many operations easier

• Tasks to do:
– Clipping – decide what you can see
– Rasterization - decide which pixels are covered
– Hidden surface removal - decide what is in front
– Shading - decide what color things are

02/21/02 (c) 2001 University of
Wisconsin, CS559

Window Space

• Also called screen space (confusing)
• Convert the virtual screen into real screen coordinates

– Drop the depth coordinates and translate
• The windowing system takes care of this

02/21/02 (c) 2001 University of
Wisconsin, CS559

3D Screen to Window Transform

• Typically, windows are specified by an origin, width and
height
– Origin is either bottom left or top left corner, expressed as (x,y) on

the total visible screen on the monitor or in the framebuffer
• This representation can be converted to (xmin,ymin) and

(xmax,ymax)
• 3D Screen Space goes from (-1,-1,-1) to (1,1,1)

– Lets say we want to leave z unchanged
• What basic transformations will be involved in the total

transformation from 3D screen to window coordinates?

02/21/02 (c) 2001 University of
Wisconsin, CS559

3D Screen to Window Transform

• How much do we translate?
• How much do we scale?

(-1,-1)

(1,1)

(xmin,ymin
)

(xmax,ymax
)

02/21/02 (c) 2001 University of
Wisconsin, CS559

3D Screen to Window Transform

(-1,-1)

(1,1)

(xmin,ymin
)

(xmax,ymax
)

02/21/02 (c) 2001 University of
Wisconsin, CS559

Orthographic Projection

• Orthographic projection projects all the
points in the world along parallel lines onto
the image plane
– Projection lines are perpendicular to the image

plane
– Like a camera with infinite focal length

• The result is that parallel lines in the world
project to parallel lines in the image, and
ratios of lengths are preserved
– This is important in some applications, like

medical imaging and some computer aided design
tasks

02/21/02 (c) 2001 University of
Wisconsin, CS559

Simple Orthographic Projection
• Specify the region of space that we wish to render as a view volume
• Assume that the viewer is looking in the –z direction, with x to the right

and y up
– Assuming a right-handed coordinate system

• The view volume has:
– a near plane at z=n
– a far plane at z=f , (f < n)
– a left plane at x=l
– a right plane at x=r
– a top plane at y=t
– and a bottom plane at y=b

z

y

x

• Specify the region of space that we wish to render as a view volume
• Assume that the viewer is looking in the –z direction, with x to the right

and y up
– Assuming a right-handed coordinate system

• The view volume has:
– a near plane at z=n
– a far plane at z=f , (f < n)
– a left plane at x=l
– a right plane at x=r
– a top plane at y=t
– and a bottom plane at y=b

• Specify the region of space that we wish to render as a view volume
• Assume that the viewer is looking in the –z direction, with x to the right

and y up
– Assuming a right-handed coordinate system

• The view volume has:
– a near plane at z=n
– a far plane at z=f , (f < n)
– a left plane at x=l
– a right plane at x=r, (r>l)
– a top plane at y=t
– and a bottom plane at y=b, (b<t)

(r,b,n)

(l,t,f)

02/21/02 (c) 2001 University of
Wisconsin, CS559

Rendering the Volume

• To project, map the view volume onto the canonical view
volume
– After that, we know how to map the view volume to the window

• The mapping looks just like the one for screen->window:

02/21/02 (c) 2001 University of
Wisconsin, CS559

General Orthographic Projection

• We could look at the world from any direction, not just
along –z

• The image could rotated in any way about the viewing
direction: x need not be right, and y need not be up

• How can we specify the view under these circumstances?

02/21/02 (c) 2001 University of
Wisconsin, CS559

Specifying a View

• The location of the image plane in space
– A point in space for the center of the image plane, (cx,cy,cz)

• The direction in which we are looking
– Specified as a vector that points back toward the viewer: (dx,dy,dz)
– This vector will be normal to the image plane

• A direction that we want to appear up in the image
– This vector does not have to be perpendicular to n

• We also need the size of the view volume – l,r,t,b,n,f
– Specified with respect to the image plane, not the world

02/21/02 (c) 2001 University of
Wisconsin, CS559

Getting there…

• We wish to end up in the “simple” situation, so we need a
coordinate system with:
– A vector toward the viewer
– One pointing right in the image plane
– One pointing up in the image plane
– The origin at the center of the image

• We must:
– Define such a coordinate system, view space
– Transform points from the world space into view space
– Apply our simple projection from before

02/21/02 (c) 2001 University of
Wisconsin, CS559

View Space

• Given our camera definition:
– Which point is the origin of view space?
– Which direction is the normal to the view plane, n?
– How do we find the right vector, u?
– How do we find the up vector, v?

• Given these points, how do we do the transformation?

02/21/02 (c) 2001 University of
Wisconsin, CS559

View Space

• The origin is at the center of the image plane: (cx,cy,cz)
• The normal vector is the normalized viewing direction:
• We know which way up should be, and we know we have a

right handed system, so u=up×n, normalized:
• We have two vectors in a right handed system, so to get the

third: v=n×u

02/21/02 (c) 2001 University of
Wisconsin, CS559

World to View

• We must translate the world so the origin is at (cx,cy,cz)
• To complete the transformation we need to do a rotation
• After this rotation:

– The direction u in world space should be the direction (1,0,0) in
view space

– The vector v should be (0,1,0)
– The vector n should be (0,0,1)

• The matrix that does that is:

02/21/02 (c) 2001 University of
Wisconsin, CS559

All Together

• We apply a translation and then a rotation, so the result is:

• And to go all the way from world to screen:

02/21/02 (c) 2001 University of
Wisconsin, CS559

OpenGL and Transformations

• OpenGL internally stores several matrices that control
viewing of the scene
– The MODELVIEW matrix is intended to capture all the

transformations up to the view space
– The PROJECTION matrix captures the view to screen conversion

• You also specify the mapping from the canonical view
volume into window space
– Directly through function calls to set up the window

• Matrix calls multiply some matrix M onto the current matrix
C, resulting in CM
– Set view transformation first, then set transformations from local to

world space – last one set is first one applied

02/21/02 (c) 2001 University of
Wisconsin, CS559

OpenGL Camera
• The default OpenGL image plane has u aligned with the x axis, v

aligned with y, and n aligned with z
– Means the default camera looks along the negative z axis
– Makes it easy to do 2D drawing (no need for any view transformation)

• glOrtho(…) sets the view->screen matrix
– Modifies the PROJECTION matrix

• gluLookAt(…) sets the world->view matrix
– Takes an image center point, a point along the viewing direction and an up

vector
– Multiplies a world->view matrix onto the current MODELVIEW matrix
– You could do this yourself, using glMultMatrix(…) with the matrix

from the previous slides

02/21/02 (c) 2001 University of
Wisconsin, CS559

Left vs Right Handed View Space

• You can define u as right, v as up, and n as toward the
viewer: a right handed system u×v=n
– Advantage: Standard mathematical way of doing things

• You can also define u as right, v as up and n as into the
scene: a left handed system v×u=n
– Advantage: Bigger n values mean points are further away

• OpenGL is right handed
• Many older systems, notably the Renderman standard

developed by Pixar, are left handed

