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FUNCTIONS
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Functions Defined on 
General Sets

SECTION 7.1
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Functions Defined on General Sets
We have already defined a function as a certain type of 
relation. The following is a restatement of the definition of 
function that includes additional terminology associated 
with the concept.
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Arrow Diagrams
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Arrow Diagrams
We have known that if X and Y are finite sets, you can 
define a function f  from X to Y by drawing an arrow 
diagram. 

You make a list of elements in X and a list of elements in Y, 
and draw an arrow from each element in X to the 
corresponding element in Y, as shown in Figure 7.1.1.

Figure 7.1.1
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Arrow Diagrams
This arrow diagram does define a function because

1. Every element of X has an arrow coming out of it.

2. No element of X has two arrows coming out of it that 
point to two different elements of Y.
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Example 2 – A Function Defined by an Arrow Diagram

Let X = {a, b, c} and Y = {1, 2, 3, 4}. Define a function f  
from X to Y by the arrow diagram in Figure 7.1.3. 

a. Write the domain and co-domain of f.
b. Find f (a), f (b), and f (c).
c. What is the range of f ?
d. Is c an inverse image of 2? 
Is b an inverse image of 3?
e. Find the inverse images of 2, 4, and 1.
 f . Represent f as a set of ordered pairs.

Figure 7.1.3
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Example 2 – Solution
a. domain of                     co-domain of

b.   

c. range of

d. Yes, No

e. inverse image of 
    inverse image of 
    inverse image of            (since no arrows point to 1)

f.  
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Arrow Diagrams
In Example 2 there are no arrows pointing to the 1 or the 3. 

This illustrates the fact that although each element of the 
domain of a function must have an arrow pointing out from 
it, there can be elements of the co-domain to which no 
arrows point. 

Note also that there are two arrows pointing to the 2—one 
coming from a and the other from c.
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Arrow Diagrams
Earlier we have given a test for determining whether two 
functions with the same domain and co-domain are equal, 
saying that the test results from the definition of a function 
as a binary relation. 

We formalize this justification in Theorem 7.1.1.
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Example 3 – Equality of Functions
a. Let J3 = {0, 1, 2}, and define functions f and g from J3 to 

J3 as follows: For all x in J3,

    
    Does f = g?

b. Let F: R → R and G: R → R be functions. Define new 
functions F + G: R → R and G + F: R → R as follows: 
For all x ∈ R,

    Does F + G = G + F?
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Example 3 – Solution
a. Yes, the table of values shows that f (x) = g(x) for all x in 

J3.

b. Again the answer is yes. For all real numbers x,

    Hence F + G = G + F.
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Examples of Functions
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Example 4 – The Identity Function on a Set

Given a set X, define a function IX from X to X by
                        
                                         for all x in X.

The function IX is called the identity function on X 
because it sends each element of X to the element that 
is identical to it. Thus the identity function can be 
pictured as a machine that sends each piece of input 
directly to the output chute without changing it in any 
way.

Let X be any set and suppose that     and        are
elements of X. Find              and             .
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Example 4 – Solution
Whatever is input to the identity function comes out 
unchanged, so                     and 
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Examples of Functions
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Example 8 – The Logarithmic Function with Base b

Find the following:
a.                      b.                     c.
 
d.                                                   e.

Solution:
a.

b.

c.
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Example 8 – Solution
d.                      because the exponent to which 2 must be   
    raised to obtain 2m is m.
                    
e.                  because log2 m is the exponent to which 2   
    must be raised to obtain m.

cont’d
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Examples of Functions
We have known that if S is a nonempty, finite set of 
characters, then a string over S is a finite sequence of 
elements of S. 

The number of characters in a string is called the length of 
the string. The null string over S is the “string” with no 
characters. 

It is usually denoted ∈ and is said to have length 0.
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Example 9 – Encoding and Decoding Functions

Digital messages consist of finite sequences of 0’s and 1’s. 
When they are communicated across a transmission 
channel, they are frequently coded in special ways to 
reduce the possibility that they will be garbled by interfering 
noise in the transmission lines. 

For example, suppose a message consists of a sequence 
of 0’s and 1’s. A simple way to encode the message is to 
write each bit three times. Thus the message

would be encoded as
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Example 9 – Encoding and Decoding Functions

The receiver of the message decodes it by replacing each 
section of three identical bits by the one bit to which all 
three are equal.

Let A be the set of all strings of 0’s and 1’s, and let T be the 
set of all strings of 0’s and 1’s that consist of consecutive 
triples of identical bits.
 
The encoding and decoding processes described above 
are actually functions from A to T and from T to A. 

cont’d
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Example 9 – Encoding and Decoding Functions

The encoding function E is the function from A to T defined 
as follows: For each string s ∈ A,

E(s) = the string obtained from s by replacing each
           bit of s by the same bit written three times.

The decoding function D is defined as follows: For each 
string t ∈ T,

D(t) = the string obtained from t by replacing each           
consecutive triple of three identical bits of t by                    
                 a single copy of that bit.

cont’d
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Example 9 – Encoding and Decoding Functions

The advantage of this particular coding scheme is that it 
makes it possible to do a certain amount of error correction 
when interference in the transmission channels has 
introduced errors into the stream of bits. 

If the receiver of the coded message observes that one of 
the sections of three consecutive bits that should be 
identical does not consist of identical bits, then one bit 
differs from the other two.

In this case, if errors are rare, it is likely that the single bit 
that is different is the one in error, and this bit is changed to 
agree with the other two before decoding.

cont’d
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Boolean Functions
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Boolean Functions
We have discussed earlier that how to find input/output 
tables for certain digital logic circuits. 

Any such input/output table defines a function in the 
following way: The elements in the input column can be 
regarded as ordered tuples of 0’s and 1’s; the set of all 
such ordered tuples is the domain of the function. 

The elements in the output column are all either 0 or 1; thus 
{0, 1} is taken to be the co-domain of the function. The 
relationship is that which sends each input element to the 
output element in the same row.
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Boolean Functions
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Example 11 – A Boolean Function
Consider the three-place Boolean function defined from the 
set of all 3-tuples of 0’s and 1’s to {0, 1} as follows: For 
each triple (x1, x2, x3) of 0’s and 1’s,

Describe f using an input/output table.

Solution:
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Example 11 – Solution
The rest of the values of f can be calculated similarly to 
obtain the following table.

cont’d



29

Checking Whether a Function
Is Well Defined
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Checking Whether a Function Is Well Defined

It can sometimes happen that what appears to be a 
function defined by a rule is not really a function at all. To 
give an example, suppose we wrote, “Define a function 
f : R → R by specifying that for all real numbers x,

There are two distinct reasons why this description does 
not define a function. For almost all values of x, either (1) 
there is no y that satisfies the given equation or (2) there 
are two different values of y that satisfy the equation. 
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Checking Whether a Function Is Well Defined

For instance, when x = 2, there is no real number y such 
that  22 + y2 = 1, and when x = 0, both y = –1 and y = 1 
satisfy the equation 02 + y2 = 1. 

In general, we say that a “function” is not well defined if it 
fails to satisfy at least one of the requirements for being a 
function.
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Example 12 – A Function That Is Not Well Defined

We know that Q represents the set of all rational numbers. 
Suppose you read that a function f : Q → Z is to be defined 
by the formula

                           for all integers m and n with n ≠ 0.

That is, the integer associated by f to the number      is m. 
Is f well defined? Why?
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Example 12 – Solution
The function f is not well defined.

The reason is that fractions have more than one 
representation as quotients of integers.

For instance,           Now if f were a function, then the
definition of a function would imply that                  since
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Example 12 – Solution
But applying the formula for f, you find that

and so

This contradiction shows that f is not well defined and, 
therefore, is not a function.

cont’d
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Checking Whether a Function Is Well Defined

Note that the phrase well-defined function is actually 
redundant; for a function to be well defined really means 
that it is worthy of being called a function.
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Functions Acting on Sets



37

Functions Acting on Sets
Given a function from a set X to a set Y, you can consider 
the set of images in Y of all the elements in a subset of X 
and the set of inverse images in X of all the elements in a
subset of Y.
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Example 13 – The Action of a Function on Subsets of a Set

Let X = {1, 2, 3, 4} and Y = {a, b, c, d, e}, and define 
F : X → Y by the following arrow diagram:

Let A = {1, 4}, C = {a, b}, and D = {c, e}. Find F(A), F(X), 
F−1(C), and F−1(D).
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Example 13 – Solution
                          


