Федеральное государственное образовательное учреждение высшего образования «Оренбургский государственный медицинский университет» Министерства здравоохранения Российской Федерации

КАФЕДРА БИОЛОГИЧЕСКОЙ ХИМИИ

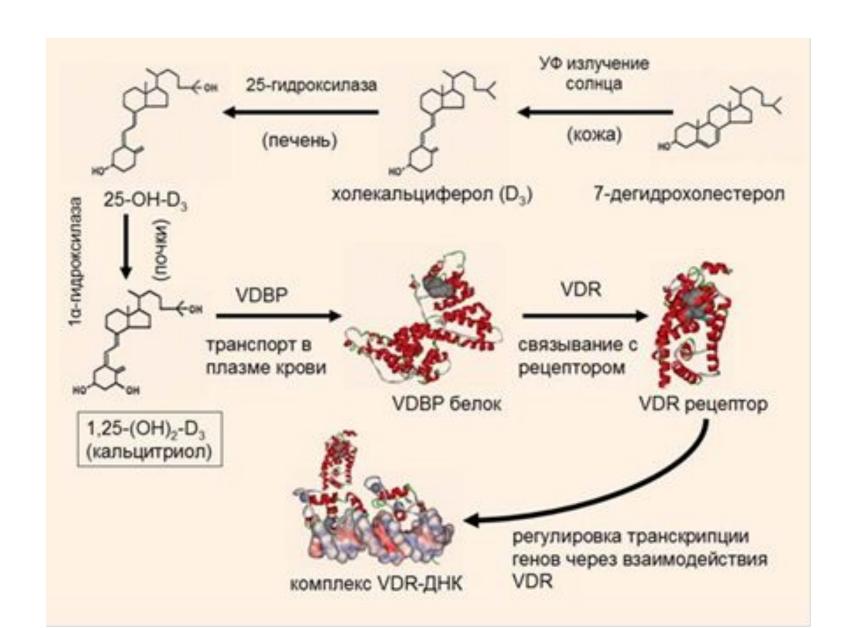
Геномные роли витамина D

Подготовила: Туля О.И. студентка 308 группы лечебного факультета Преподаватель: доц., д.б.н. Карнаухова И.В., доц., д.б.н. Лебедева Е.Н.

Эффекты витамина D

Геномные механизмы

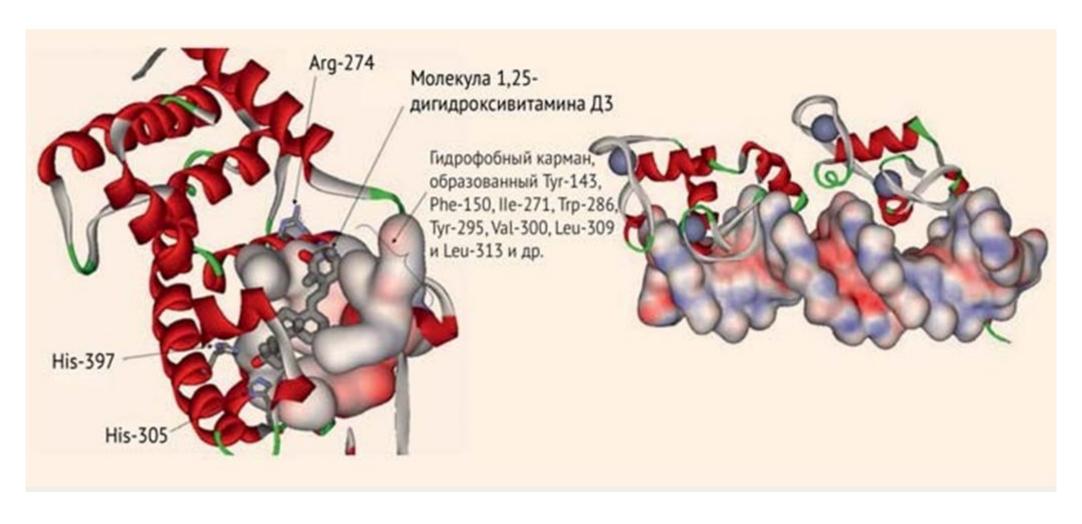
Негеномные механизмы

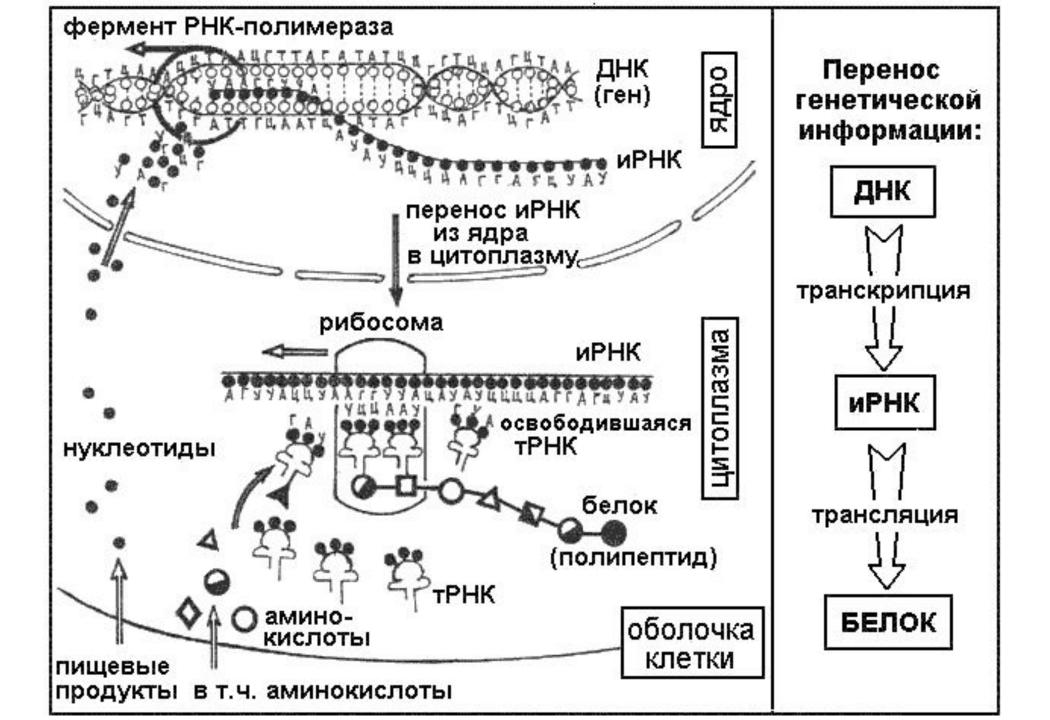

• опосредованы взаимодействиями рецептора витамина D (VDR) с геномной ДНК

• воздействие витамина D на сигнальные пути в клетках иммунной и нервной систем

• Активация рецепторов VDR – наиважнейший способ реализации биологических эффектов витамина D.

• Наиболее биологически активным витамином D, активирующим рецепторы VDR, является кальцитриол (1,25-дигидроксивитамин D или «1,25(OH)2D»).


Гомеостаз витамина D



•Биоинформационный анализ показал, что молекула рецептора витамина D взаимодействует с ДНК 2 727 генов человека.

*Среди этих генов всего лишь 36 генов кодируют белки гомеостаза кальция.

Пространственная структура рецептора витамина D

Эффекты витамина D3 (Захарова и др., 2013)

Внутриклеточно витамин D преимущественно стимулирует:

- 1. экспрессию внутриядерных белков взаимодействуют с геномной ДНК и участвуют в поддержании стабильности генома, инициации генной экспрессии и синтеза белка;
- 2. экспрессию белков митохондрий указывает на важность витамина D для энергетического метаболизма клетки;
- экспрессию белков внеклеточной матрицы на важность взаимосвязи витамина D с метаболизмом соединительной ткани.

Специфически ассоциированные белки с рецептором VDR:

- белки типа «цинковый палец» (вовлечены в процессы генной экспрессии),
- митохондриальные белки,
- НАД-дегидрогеназы (окислительно-восстановительные процессы),
- убиквитин-регулируемые белки (необходимы для контролируемой деградации отработанных белков на специальном клеточном механизме протеасоме),
- интерлейкины (регулируют иммунитет и процессы воспаления),
- белки гомеостаза кальция.

Ген	Белок	Функция белка
Регуляция артериального давления		
ALOX5	5-липоксигеназа	Синтез лейкотриенов и противовоспалительных простаноидов из онега-3 ПНЖК
CALM 1	Калмодулин	Сигнальный белок, активирует синтетазу оксида азота NO
GUCA2B	Активатор 2В гуанилатциклазы	Внутриклеточная передача сигнала от NO
NOS1 NOS3	Синтетаза оксида азота NO	Синтез NO из аргинина
PLA2G1B	Фосфолипазы А2	Синтез лейкотриенов и противовоспалительных простаноидов из онега-3 ПНЖК
Инсулинрезистентность, сахарный диабет		
DOC2B	Белок бета с двойным С2-подобным доменом	Сенсор уровней кальция в крови, регулирует слияние транспортных везикулов с клеточной неибраной, вовлечен в стинулируемую глюкозой секрецию инсулина
CAMK2G	Са ²⁺ ∫кальнодұлин-зависиная киназа	Регулирует передачу сигнала по Са ²⁺ /кальнодулин-зависинын наршрутан, участвует в нышечнон сокращении, формировании синапсов в ЦНС и секрецию инсулина в островках Лангерганса
CBL	Сигнальный белок СВL-С	Осуществляет передачу сигнала от рецептора инсулина
EEF2K	Киназа фактора элонгации 2	Регулирует синтез белка, участвует в передаче сигнала от рецептора инсулина
Метаболизм соединительной ткани (в т. ч. кости)		
ASPN	Белок 1, ассоциированный с перио- донтальным лигаментом	Регулирует нинерализацию периодонтального лиганента, принципиально важен для активности трансформирующего фактора роста. Генетические дефекты ассоциированы с повышенным риском остеоартрита и резорбции кости, приводят к патологии нежпозвонковых дисков
DUOX2	Тироид оксидаза	Синтезирует перекись водорода для синтезатироидных горнонов ферментов тиоредоксин-перокси- дазы. Дефекты гена приводят к диснорфогенезу щитовидной железы и нарушения и структуры костей
FGFR1	Рецептор фактора роста фибробластов 1	Осуществляет биологические эффекты факторов роста фибробластов (ФРФ), в т. ч. ФРФ-23
SULF2	В неклеточные сульфатазы	Удаляет сульфат-группы с глюкозанинов гелевой (протеин-гликановой) основы соединительной ткани (гепаран сульфат протеогликаны)
THBS3	Троибоспондин 3	Белок клеточной адгезии, опосредует взаинодействия клеток с натрицей соединительной ткани кости. Связывает фибриноген, фибронектин, ланинин, коллаген типа У

- В таблице приведены 15 из 36 кальций- зависимых белков, для которых были установлены соответствующие физиологические эффекты регуляция АД, эффектов инсулина и метаболизма соединительной ткани.
- Осуществление этих биологических эффектов витамина D зависит от наличия достаточных уровней кальция, т. к. перечисленные белки могут осуществлять свои биологические функции только в присутствии ионов кальция.

Воздействие активированного рецептора VDR на:

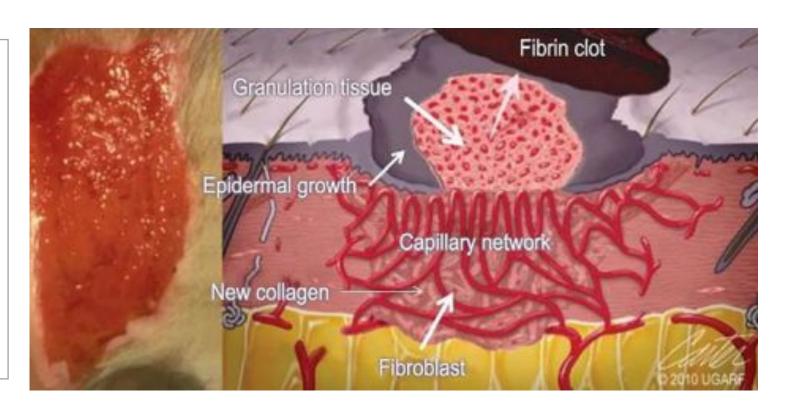
- 1. активность инсулиноподобного фактора роста,
- 2. фактор роста фибробластов,
- 3. трансформирующие факторы роста
- 4. эпигенетические эффекты витамина D.

! Эти примеры интересны тем, что указывают на фундаментальные механизмы воздействия витамина D на рост и восстановление тканей (в частности, жировой, мышечной и соединительной).

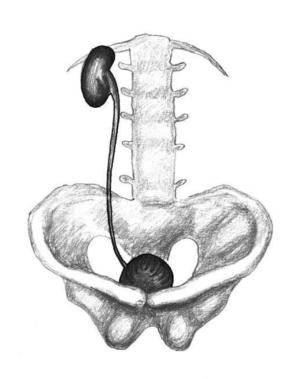
Витамин D-зависимый белок IGFBP (слева), связываясь с IGF (справа), продлевает период полураспада IGF и усиливает антиатеросклеротический эффект IGF

Пространственная структура комплекса инсулиноподобного фактора роста (IGF) с IGF-связывающим белком (IGFBP)

Фактор роста фибробластов


- И фактор ФРФ-2, и рецептор FGFR10P2 необходимы для осуществления процесса заживления ран.
- У детей с дефицитом витамина D заживление ран кожи и органов, формирование костной мозоли существенно замедлены.

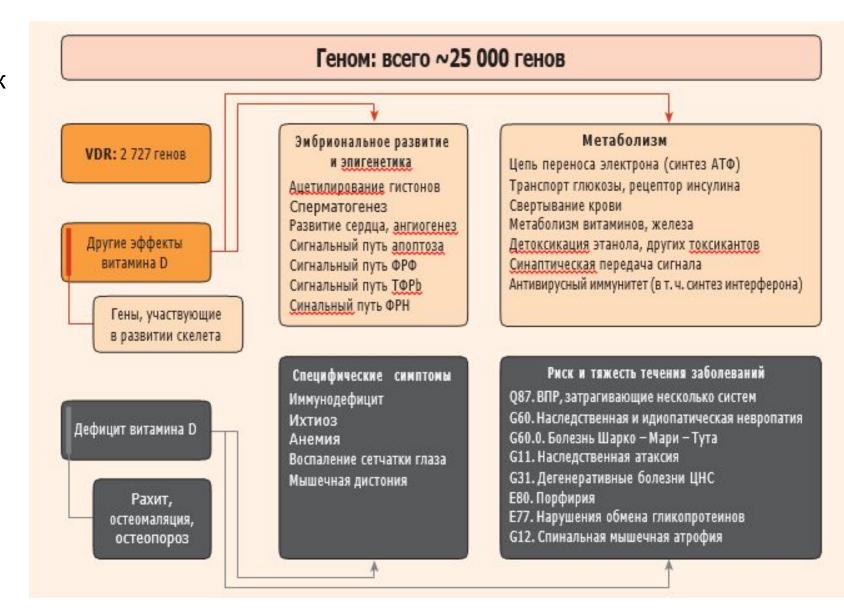
трансформирующие ростовые факторы оета (ТРФВ)


• Дефицит витамина Д и делеция гена рецептора витамина ухудшают заживление кожи после травмы вследствие нарушений активности сигнальных каскадов ТРФβ и, соответственно, нарушений активации макрофагов и снижения формирования грануляционной ткани.

ΤΡΦβ:

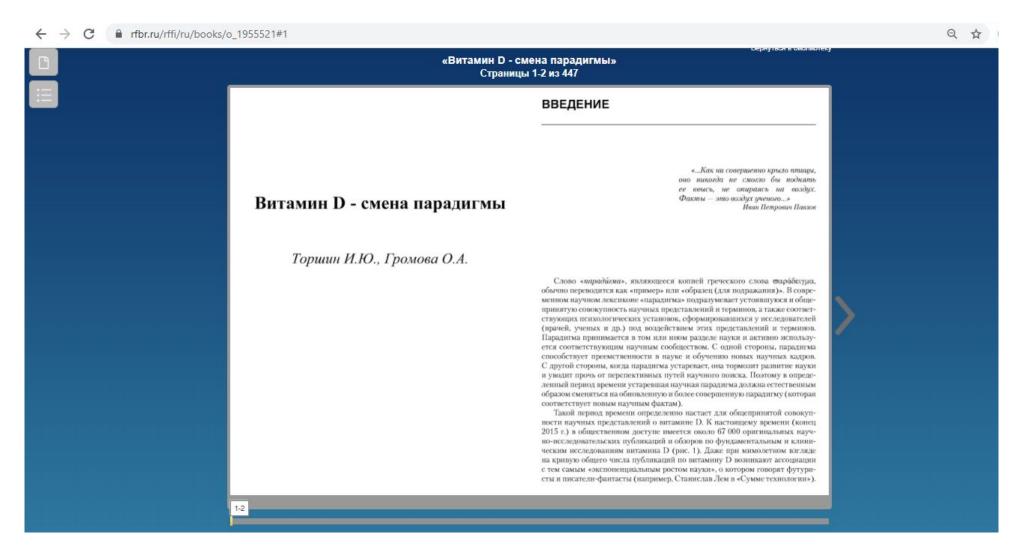
- серинтреониновой киназы STRAP (ген STRAP),
- транскрипционных факторов sp1 и e2f4 (гены SP1 и E2F4),
- циклина Т2 (ген CCNT2) и циклин-зависимой киназы 8 (ген CDK8),
- ТРФβ-активируемой киназы 1 (ген ТАВ1) и др.

Эпигенетические эффекты витамина Д



- Рецептор VDR может регулировать экспрессию 12 генов, вовлеченных в ацетилирование гистонов (специальных ДНК-стабилизирующих белков), т. е. в один из известных механизмов эпигенетического наследования.
- Нарушения экспрессии данных генов на фоне дефицита витамина D будут стимулировать развитие многочисленных пороков развития плода, затрагивающих различные системы организма (пороки развития скелета, почек, аномалии сердца

Данные 12 генов в основном кодируют различные компоненты белкового комплекса гистон ацетилтрансферазы – ДНК-метилтрансфераза-ассоциированный белок 1 (ген DMAP1), поликомб энхансер 1 (EPC1), элонгаторы ацетилтрансферазы 3 и 4 (гены ELP3, ELP4), белок E1A (ген EP400) и


Заключение

- Дефицит витамина D приводит к сниженной активности рецептора VDR, так что описываемые геномные роли витамина D осуществляются не в полной мере. В результате возникают нарушения строения не только костей, но и других систем органов, нарушается сложно сбалансированная иерархия активности факторов роста, иммунитет, транспорт и переработка глюкозы, синаптическая передача сигнала, процессы детоксикации.
- Отмечается эпигенетический потенциал витамина D, осуществляющийся посредством нормализации ацетилирования гистонов специальных ДНК-стабилизирующих белков.

Спасибо за внимание!

https://www.rfbr.ru/rffi/ru/books/o_195551

