ПОЛИМЕРНЫЕ КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ С ЦЕННЫМИ СВОЙСТВАМИ

к.х.н., доцент **Лебедева Оксана Викторовна** Консультант д.х.н., профессор Пожидаев Юрий Николаевич

Цель работы: Разработка физико-химических основ зольгель процесса с участием функциональнозамещенных кремнийорганических мономеров и полимерных систем на основе N-винильных производных азотсодержащих гетероциклических соединений, ненасыщенных глицидиловых эфиров, а также гетероароматических производных сульфокислот, включая разработку методов синтеза и диагностики функциональных свойств образующихся гибридных полимерных материалов.

Задачи исследования:

• целенаправленный синтез сополимеров на основе Nвинильных производных азотсодержащих гетероциклических соединений с промышленными мономерами: винилхлоридом, винилацетатом, метилметакрилатом, 2-гидроксиэтилметакрилатом; • изучение состава и строения сополимеров на основании данных элементного анализа, ЯМР, ПМР, ИК спектроскопии, а также реакционной способности используемых мономеров в процессах радикальной сополимеризации;

• золь-гель синтез гибридных композитов на основе кремнийорганических мономеров и поливинильных производных азотсодержащих гетероциклических соединений, ненасыщенных глицидиловых эфиров, а также гетероароматических производных сульфокислот;

• изучение состава и строения гибридных композитов на основании данных элементного анализа, ИК спектроскопии, электронной микроскопии;

раскрытие потенциальных возможностей практического использования синтезированных сополимеров, гибридных композитов (в качестве лаковых покрытий, потенциальных лекарственных препаратов, адсорбентов, ионообменных мембран).

Полимеры

Полимерные системы

МВП-ВХ

ВИМ-ВХ

ВБИ-ВХ

BT-BX

4-ВП-ВА

4-ВП-ГЭМА

´∟ m COOCH₃ Ν

Впир-ММА

∣I ∙N

Впир-ВА

Гетероароматические сульфокислоты

ВГЭ-ВХ

-SO₃H

Прекурсоры кремниевого блока

 $\begin{array}{ccc} OC_2H_5 & OC_2H_5 \\ C_2H_5O-Si(CH_2)_3NHCNH(CH_2)_3Si-OEt \\ I & II \\ OC_2H_5 & S & OC_2H_5 \end{array}$

тетраэтоксисилан (ТЭОС) N,N-бис(3-триэтоксисилилпропил)тиокарбамид (БТМ-3)

$$C_{2}H_{5}O - S_{1}i(CH_{2})_{3}NH - \swarrow N = \checkmark$$

([триэтоксисилилпропил]амино)пиридин (ТЭАП)

$$n \operatorname{Si}(\operatorname{OC}_2\operatorname{H}_5)_4 + 2n \operatorname{H}_2\operatorname{O} \rightarrow 1/n (\operatorname{SiO}_2)_n + 4n \operatorname{C}_2\operatorname{H}_5\operatorname{OH}$$

Зависимость состава сополимера (m₁) от исходного соотношения мономеров (M₁)

Эффективные константы относительной активности ВАЗ и МВП (М1) в сополимеризации с ВХ

М1, м	юл. доли	Эффективные конс- танты относительной	Δδ _{α,β}	длі бло	ина ков
M ₁	\mathbf{m}_1	реакционной способ- ности	$H_{c}^{N} = H_{a}^{H_{a}}$	l_1	<i>l</i> ₂
		Впир-ВХ (рКв	$_{\rm H}^{+=1.70}$	0	
0.1	0.49	$r_{\rm B пир}{}^{\rm э\Phi} = 0.790$	33.58	1	1
0.5	0.64	$r_{\rm BX}{}^{\rm SP} = 0.015$		2	1
0.9	0.90			9	1
		ВИМ-ВХ (рК _{вн} +	=7.52)		
0.1	0.48	$r_{\rm BHM}{}^{\scriptscriptstyle 9\Phi}$ = 0.750	29.62	1	1
0.5	0.63	$r_{\rm BX}{}^{\rm sphe}=0.017$		2	1
0.9	0.88			8	1
ВБИ-ВХ (рКвн			+=5.78)		
0.1	0.45	$r_{\rm BEH}{}^{3\Phi} = 0.824$	28.48	1	1
0.5	0.64	$r_{\rm BX}{}^{\rm SP}=0.037$		2	1
0.9	0.89			8	1
		ВТр-ВХ (рК _{ВН} +=2.9	7)		
0.1	0.24	$r_{\rm BT}^{3\Phi} = 1.240$	25.64	1	4
0.5	0.58	$r_{\rm BX}{}^{\rm phi} = 0.220$		2	1
0.9	0.92			12	1
		МВП-ВХ (<i>в массе</i>) (р.	$K_{BH}^{+}=5.67)$		
0.2	0.80	$r_{\rm MB\Pi} {}^{\rm sp} = 14.13$			
0.5	0.94	$r_{\rm BX}^{3\Phi} = 0.04$			
0.8	0.98				

Сополимеризация ВАЗ (M1) с ВХ (ДМФА, ДАК-0.5 мас.%, 60°С, 6ч)

Состав исх. смеси, мол. доли	Соста	ав сополим пектрам Я	иера, рассчит IMP ¹³ C, мол	*Z,	[ŋ],	Выход,		
M ₁	m ₁	m ₂	СН=СН	заряженное звено гетероцикла	%	дл/г	% 0	
ВИМ-ВХ (рК _{вн} +=7.52)								
0.80	0.8945	0.0353	0.0351	0.0351	49.90	0.74	85	
0.20	0.4117	0.4113	0.0885	0.0885	17.70	0.42	65	
ВБИ-ВХ (рК _{ри} +=5.78)								
0.80	0.8363	0.0767	0.0480	0.0480	38.50	0.28	80	
0.30	0.5540	0.3850	0.0305	0.0305	7.30	0.07	68	
	BT-BX ($pK_{pu}^+=2.97$)							
0.80	0.7813	0.1223	0.0482	0.0482	28.10	0.97	90	
0.65	0.7825	0.1851	0.0162	0.0162	8.10	0.83	86	
		BI	Пир-ВХ (рК _в	+=1.70)			· ·	
0.80	0.8421	0.1579	- DI	-	-	1.60	90	
0.20	0.3490	0.6510	-	-	-	0.10	63	
		MBП-I	ЗХ (в массе) ($(pK_{BH}^{+}=5.67)$			г I	
0.80	0.9767	0.2333	_	-	-	0.19	84	
0.50	0.8225	0.1411	0.0182	0.0182	11.40	0.10	628	

Образование промежуточного комплекса в макромолекулярной цепи

Строение сополимеров МВП-ВХ

20 Содержание Прочность Прочность Адгезия 80 80 Содержание Прочность Прочность Адгезия 80 0 0 0 0 0 0 0 0 80 0 </th <th><u>л</u> рал.</th>	<u>л</u> рал.
$^{\circ}$ 20 $^{\circ}$ 3 $^{\circ}$ 6 $^{\circ}$ 40 $^{\circ}$ 40	<u>л</u> рал.
в в кг см изгибе, мм надрезов, ба изгибе, мм надрезов, ба в сополимере мол. доли решетч. во в	л рал.
40 сополимере решетч. па 60 -1 -2 Мол. доли Решетч. па 80 -1 -1 -1 -1 -1 -1	рал.
во мол. доли во DTr DV	
80 ⁻ DTr DV	
	I
ВІР-ВА	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
сополимеров: 1-ПВХ 2-ВБИ-	
BX. 3-BTp-BX. 4-BTUP-BX. 5- 0.61 45 1 1 1	I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Исследование модифицированных сополимеров МВП-ВХ на	
антимикробную активность 1 2	
№ Культура Экстракт Модифицированный Модифицированный	
п/п ортилии образец со степенью образец со степен	ю
однобокой кватернизации 37 % кватернизации 30 %	
1 Staphyllococcus – 18 14	
aureus P-209	
2 Staph. aureus 10 23 12	
3 Clebsiella 15 18 10	
4 Ps. aeruginose 18 -	
5 Clebsiella – 17 –	
$\begin{vmatrix} 6 \\ Proteus \end{vmatrix} = 23 \qquad - 10$	

Свойства покрытий сополимеров ВАЗ-ВХ

Характеристика сополимеров (ДМФА, ДАК – 1 % мас., 60 °С, 6 ч)

Зависимость состава сополимера (m_1) от исходного соотношения мономеров в смеси (M_1) :

×- Впир (М1)-ВА, ◆ - МВП (М1)-ВА,
▲ - 4-ВП (М1)-ВА, · - ВИМ (М1)-ВА,
■ - 4- ВП (М1)-ГЭМА, * - Впир (М1)-ММА

M1,	мол. доли	Константы сополиме-	Выход, %	[η], /Γ	Мол. масса (средневес.).	Длі бло	ина
исх. смесь	сополимер	ризации		240171	M·10 ⁻³	l_1	
		МВП	(M ₁)-BA				
0.10	0.46	$r_1=0.46\pm0.22$	5	0.02	131	1	2
0.50	0.58	$r_2 = 0.06 \pm 0.001$	41	0.45	215	1	1
0.90	0.67		81	0.95	295	5	1
		4-ВП (М	М1)-ГЭМА				
0.20	0.31	$r_1 = 0.9371 \pm 0.1$	37	0.54	134	1	3
0.50	0.54	$r_2=0.4322\pm0.12$	53	1.30	176	2	1
0.80	0.83		66	1.85	285	5	1
4-ВП (M ₁)-ВА							
0.10	0.42	$r_1 = 0.16 \pm 0.03$	10	0.02	108	1	1
0.50	0.58	$r_2 = 0.001 \pm 0.04$	39	0.48	122	1	1
0.90	0.71		78	0.93	270	2	1
	1	Впир	(M ₁)-BA				
0.10	0.33	$r_1=0.42\pm0.14$	44	0.25	130	1	1
0.50	0.75	$r_2=0.05\pm0.04$	58	0.78	180	2	1
0.90	0.80		72	0.94	270	7	1
		Впир (M1)-MMA				
0.10	0.17	$r_1=0.45\pm0.01$	36	0.35	75	1	5
0.50	0.47	$r_2=0.39\pm0.02$	67	0.97	180	1	1
0.90	0.81		93	1.20	280	5	1
		ВИМ	(M ₁)-BA				
0.20	0.33	$r_1 = 0.63 \pm 0.08$	46	0.28	120	1	2
0.50	0.56	$r_2=0.26\pm0.20$	58	0.67	167	2	1
0.80	0.77		70	0.85	300	4	1

Стадии получения композитов

- гидролиз кремнийорганического мономера с образованием силанолов и продуктов их поликонденсации в смеси с органическим компонентом, приводящие к образованию золя.
- – образование геля, т.е. превращение свободнодисперсной системы (золя) в связнодисперсную;
- старение (созревание) геля (на этой стадии происходит синерезис – выделение воды в ходе продолжающейся химической реакции поликонденсации, уплотнение структуры геля);
- – сушка, удаление жидкости из пространственной структуры геля;
- – дегидратация и уплотнение геля при повышенной температуре, удаление сорбированной воды.
- – формирование композиционного материала.

Химический состав и некоторые характеристики композитов на основе ТЭОС и азотсодержащих гетероциклических полимеров

Композит	Элементный состав, %				n:m*	Выход	S _v ,	Τ
	С	Η	Si	Ν		%	м ² /г	разл.' С
ПВпир-SiO ₂	24.69	3.37	25.04	10.96	2.3 : 1	50.7	20.3	250
ПВИ-SiO ₂	22.84	2.85	27.13	10.96	2.5 : 1	49.6	10.3	270
ПВСП-Si O_2	36.62	3.45	17.29	6.64	1.3 : 1	69.5	4.9	330
ПМВП-Si O_2	55.49	6.00	12.81	8.45	0.8 : 1	68.3	33.7	314

СЭМ поверхности композита ПВИ-SiO₂

ССЕ, ПСЕ и D композитов по ионам благородных металлов в системе ТЭОС – азотистое полиоснование

		CCE	, <u>мг/г</u>		D , см ³ /г			
Композит		ПСЕ	2, мг/г					
Romnosmi	Pd(II)	Pt(IV)	Au(III)	Ag(I)	Pd(II)	Pt(IV)	Au(III)	Ag(I)
ПВПир-SiO ₂	<u>139</u>	<u>582</u>	<u>115</u>	273	1030	6150	500	28180
-	457	840	849	465				
ПВИ-SiO ₂	<u>182</u>	<u>760</u>	<u>140</u>	<u>70</u>	860	20500	1030	500
2	434	799	807	443				
ПВСП-SiO ₂	<u>480</u>	<u>704</u>	<u>302</u>	222	10660	89000	1430	2060
2	538	1010	1000	548				
ПМВП-SiO ₂	<u>370</u>	<u>420</u>	<u>110</u>	<u>47</u>	1140	2500	980	420
2	635	1168	1180	647				

Степень заполнения функциональных групп (%) гибридных композитов ионами благородных металлов

Композит	Pd(II)	Pt(IV)	Ag(I)	Au(III)
ПВПир-SiO ₂	30	69	59	14
ПВИ-SiO ₂	42	95	16	17
ПВСП-SiO $_2$	89	70	40	30
ПМВП-SiO ₂	58	36	7	9 15

Формирование композитов в золь-гель процессе ТЭОС и азотсодержащих сополимеров

Зависимость *E* и tgδ от температуры композита ВПир-MMA-SiO₂

Характеристика композитов на основе азотистых полиоснований

Композит	Содержание, %		Содержание	Выход,	$T_{na3\pi}^{,\circ}$	Т стекл,
	Ν	Si	SiO,, %	%	C	°C
	11.9	6.1	13.1	63	260	55
Впир-MMA:SiO ₂	3.8	19.6	42.0	66	290	83
	3.9	4.5	9.6	68	201	72
4-ВП-ГЭМА:SiO ₂	2.9	14.8	31.8	58	280	103
	6.8	5.0	10.8	71	215	63
4-ВП-ВА: SiO_2	4.0	22.0	47.1	77	320	79
	14.6	4.9	10.5	75	195	53
ВИМ-BA:SiO ₂	8.1	23.4	50.1	69	230	82

СЭМ поверхности композитов

а) 4-ВП-ГЭМА-SiO₂, б) ВПир-ММА-SiO₂, в) ВИМ-ВА-SiO₂, г) 4-ВП-ВА-SiO₂

размер частиц 0.25-0.5 мкм

ИК спектры композитов

376.48 389.3

Композит ССТ-АДК-SiO₂

Температурная зависимость модуля растяжения (Е ') (1) и потерь тангенс (tgα) (2) для мембраны ССТ-АДК-SiO₂

СЭМ поверхности композита

Характеристические полосы, см⁻¹: 1065, 800-740, 430, (Si–O–Si), 1170-1100 (Si-O-C), 1420-1300 (SO₃H-группы) и 710-500 (C-S). Полосы поглощения эпоксидной группы в спектрах отсутствуют, что подтверждает их раскрытие в процессе сульфирования сополимеров.

Композиты 4-ВП-ГЭМА/БТМ-3

ãäå R - [O_{1.5}Si(CH₂)₃]

Кривые ТГ и ДСК композита 4-ВП-ГЭМА/БТМ-3

размером частиц 0.2-0.4 мкм.

СЭМ поверхности композита

Характеристические CM^{-1} : полосы, 1100-1250 (Si-O-Si), 1740 (С=О), смещение полосы поглощения пиридинового атома азота в высокочастотную область с 1600 до 1624 см⁻¹, в сравнении с положением в ИК спектрах исходного поли-4-винилпиридина.

Композиты ВГЭ-ВХ/БТМ-3 и ВГЭ-ВХ/ТЭАП

(преобладающий радиус пор 65–80 нм), удельной поверхностью по БЭТ 2.9 (ВГЭ-ВХ/БТМ-3) и 2.2 (ВГЭ-ВХ/ТЭАП) м²/г.

где $\mathbf{X} = (CH_2)_3 NHC(=S)NH(CH_2)_3$ (ВГЭ-ВХ/БТМ-3), $\mathbf{Y} = (CH_2)_3 NHC_5 H_5 N$ (ВГЭ-ВХ/ТЭАП)

Характеристические полосы поглощения, см⁻¹: 1000-1200 (Si-O-Si), 680–690 (С–Сl), 780-830 (Si–O–C), 750-840, 810-950, 1230-1260 и 3050-3060 (эпоксигруппа отсутствует), что свидетельствует о раскрытии в процессе зольгель синтеза эпоксидной группы и последующем образовании ковалентной связи с кремнийорганическим каркасом.

СЭМ поверхности композитов ВГЭ-ВХ/БТМ-3 (а) и ВГЭ-ВХ/ТЭАП (б). (Размер частиц 1.25 до 2.5 мкм)

Изотермы адсорбции Pt(IV) при 298 К (1), 318 К (2) и 338 К (3) композитами: 4-ВП-ВА-SiO₂ (a), ВИМ-ВА-SiO₂ (б), 4-ВП-ГЭМА-SiO₂ (в)

Изотермы адсорбции Pt(IV) ВГЭ-ВХ/БТМ-3 (а), ВГЭ-ВХ/ТЭАП (б), 4-ВП-ГЭМА/БТМ-3 (в) при 298 (1), 318 (2) и 338 К (3)

Сорбционное извлечение хлорокомплексов платины (IV)

 \rightarrow $(SiO_2)_X \begin{bmatrix} f & f \\ f &$

PtCl5

ИК-спектре композитов, насыщенного металлом, полосы поглощения в области 300-400 см⁻¹ свидетельствуют об образовании связи металл-азот в твердой фазе.

$$\begin{bmatrix} O_{1.5}Si(CH_2)_3 - NH - C - NH - (CH_2)_3SiO_{1.5} \\ I \\ S \end{bmatrix}_n \xrightarrow{n PtCl_6^{2^-}} \begin{bmatrix} O_{1.5}Si(CH_2)_3 - NH - C - NH - (CH_2)_3SiO_{1.5} \\ I \\ S - PtCl_4 \end{bmatrix}_n$$

$$\begin{bmatrix} O_{1.5}Si(CH_2)_3NH & & \\ N = & \\ & &$$

Параметры моделей адсорбции платины(IV)

Параметры	4-B	вп-ва-ѕ	iO,	ВИ	ВИМ-BA-SiO,			4-ВП-ГЭМА-SiO,		
моделей	298 К	318 K	338 K	298 К	318 K	338 K	298 К	318 К	338 K	
Модель Лэнгмюра										
R^2	0.939	0.976	0.906	0.582	0.371	0.881	0.608	0.776	0.543	
Модель Фрейндлиха										
R^2	0.998	0.910	0.944	0.938	0.944	0.962	0.959	0.970	0.967	
ΔG,										
кДж/моль	-14.85	-25.04	-27.99	-11.80	-16.77	-20.42	-1.34	-9.47	-21.10	
Модель Дубинина–Радушкевича										
Ε,										
кДж/моль	9.18	14.15	16.58	10.11	15.97	21.80	16.90	9.18	25.19	
R^2	0.998	0.992	0.979	0.973	0.982	0.960	0.950	0.927	0.932	

Параметры	4-ВП	-ГЭМА/І	5TM-3	ВГЭ	-ВХ/БТ	M-3	ВГ	-BX/T	ЭАП
моделей	298 K	318 K	338 K	298 K	318 K	338 K	298 K	318 K	338 K
			Модел	ь Лэнгм	юра				
R^2	0.982	0.72	0.83	0.978	0.167	0.433	0.994	0.300	0.024
Модель Фрейндлиха									
R^2	0.955	0.971	0.985	0.492	0.643	0.938	0.347	0.878	0.692
ΔG,	-5.71	-9.97	-13.98	-19.03	-20.57	-21.28	-2.48	-5.56	-4.81
кДж/моль									
Модель Дубинина–Радушкевича									
E	8.25	18.90	19.19	4.69	2.29	2.79	5.93	2.45	2.77
R^2	0.911	0.911	0.952	0.950	0.885	0.983	0.841	0.982	0.950 ²⁶

Протонная проводимость полимерных пленок на основе

гомополимеров и сополимеров

№ п/п	Основа мембраны	Удельная
	(полимер, состав сополимера)	проводимость*,
		См · см ⁻¹
1.	ПВпир/H ₃ PO ₄	$2.8 \cdot 10^{-5}$
2.	ПМВП/H ₃ PO ₄	$6.7 \cdot 10^{-5}$
3.	ПВСП/H ₃ PO ₄	$5.6 \cdot 10^{-5}$
4.	МВП-ВХ (80:20 мол. %)/H ₃ PO ₄	9.1 · 10 ⁻³
5.	МВП-ВХ (90:10 мол. %)/H ₃ PO ₄	$6.7 \cdot 10^{-3}$
6.	МВП-ВА (67:33 мол. %)/H ₃ PO ₄	$5.5 \cdot 10^{-5}$
7.	4-ВП-ВА (80:20 мол. %)/H ₃ PO ₄	7.65 · 10 ⁻³
8.	4-ВП-ГЭМА (50:50 мол. %)/Н ₃ РО ₄	$5.3 \cdot 10^{-3}$
9.	4-ВП-ГЭМА (80:20 мол. %)/Н ₃ РО ₄	$6.4 \cdot 10^{-3}$
10.	Впир-ВА (80:20 мол. %) /H ₃ PO ₄	7.65 · 10 ⁻³
11.	Впир-ММА (50:50 мол. %)/H ₃ PO ₄	$3.5 \cdot 10^{-4}$
12.	Впир-ММА (75:25 мол. %)/H ₃ PO ₄	$4.1 \cdot 10^{-4}$
13.	Впир-ВХ (50:50 мол. %)/H ₃ PO ₄	$1.8 \cdot 10^{-4}$
14.	Впир-ВХ (85:15 мол. %)/Н ₃ РО ₄	$2.4 \cdot 10^{-4}$

Схема получения полимерных мембран на основе композитов

- Гидролиз ТЭОС в присутствии (со)полимеров из водно-спиртовых растворов в отсутствие катализатора при различных соотношениях силан – органический (со)полимер. При этом доля кремниевого блока варьировалась с учетом необходимой эластичности конечного образца и не превышала 10 мол. %.
- Введение в полученный гидролизат пленкообразователя (поливинилбутираль ПВБ) в соотношении композит ПВБ = 1:0.04, гомогенизация смеси.
- Нанесение смеси гидролизата и пленкообразователя на стеклянную или лавсановую поверхность.
- Отверждение пленок в процессе высушивания на воздухе.
- Термическая обработка при 110 °C.

– Отделение от подложки (стекло, лавсан) и активация мембран 9 М раствором ортофосфорной кислоты.

Золь-гель синтез композитных мембран

Удельная электропроводность полимерных пленок на основе композитов

N⁰	Состав композитной мембраны	Удельная	_
п/п	(мольное соотношение	электропроводимость,	
	компонентов)	См/см	
1.	SiO ₂ : ПВпир (1 : 19)/H ₃ PO ₄	$5.6 \cdot 10^{-3}$	
2.	SiO ₂ : ПМВП (1 : 19) /H ₃ PO ₄	$2.0 \cdot 10^{-2}$	Толщина пленок 40-50 мкм,
3.	SiO ₂ : ПВСП (1 : 19) /H ₃ PO ₄	1.8 · 10 ⁻²	термостойкость до 290 °С,
4.	SiO ₂ : MBП-BX (1 : 19)/H ₃ PO ₄	1.2 · 10 ⁻³	прочность при разрыве 55.5
5.	SiO ₂ : MBП-BX (1 : 13)/H ₃ PO ₄	8.5 · 10 ⁻³	± 2.1 МПа, относительное
6.	SiO ₂ : MBП-BA (1 : 19)/H ₃ PO ₄	1.0 · 10 ⁻²	удлинение 15 ± 5 %,
7.	SiO ₂ : 4-ВП-ВА (1 : 19)/H ₃ PO ₄	$2.3 \cdot 10^{-2}$	ионообменная емкость от 1.3
8.	SiO ₂ : 4-ВП-ГЭМА (1:19) /H ₃ PO ₄	$3.8 \cdot 10^{-2}$	до 2.1 мг-экв/г, энергия
9.	SiO ₂ : 4-ВП-ГЭМА (1:13)/H ₃ PO ₄	$4.7 \cdot 10^{-2}$	активации мембран12-13.57
10.	SiO ₂ : Впир-ВА (1 : 19)/Н ₃ РО ₄	1.6 · 10 ⁻³	кДж/моль.
11.	SiO ₂ : Впир-ММА (1 : 19)/H ₃ PO ₄	1.4 · 10 ⁻³	
12.	SiO ₂ : Впир-ММА (1 : 13)/H ₃ PO ₄	$7.8 \cdot 10^{-3}$	
13.	SiO ₂ : Впир-ВХ (1 : 19)/Н ₃ РО ₄	$4.6 \cdot 10^{-3}$	
14.	SiO ₂ : Впир-ВХ (1 : 13)/H ₃ PO ₄	$5.4 \cdot 10^{-3}$	

Гибридные мембраны ССТ-АГЭ/SiO2

Температурная зависимость протонной проводимости мембран: нафион (1), ССТ-АДК-SiO₂ (2), ССТ-АГЭ (3)

Протонная проводимость мембраны 4.0 · 10⁻²См/см (при 75% влажности и 298 К)

Элементный состав, степень сульфирования (α), ионообменная емкость, водопоглощение мембран, лямбда (λ)

	Элементный	α,	ИОЕ	ИОЕ	Водопогл., %	λ
Мембраны	анализ	%	теорет.,	титров.,	30°C/100°C	(nH ₂ O/nSO ₃)
	(C:H:S:Si), %		ммол · г ⁻¹	ммол · г ⁻¹		30°C/100°C
ССТ-АДК	67.89:6.85:9.91:0.0	53	3.1	2.3	10/87	2.5/21
ССТ-АДК-SiO ₂ (9:1)	61.04:6.17:8.84:4.0	48	2.8	2.1	6/51	1.6/11

Механический анализ ССТ-АГЭ и ССТ-АДК-SiO₂ мембран

Мембраны	Модуль	Прочности на	Относительное
	упругости,	растяжение,	удлинение при
	МПа	МПа	разрыве, %
ССТ-АГЭ	15	5	37
CCT-АДК-SiO ₂	97	7	12

ГИБРИДНЫЕ МЕМБРАНЫ

34

Данные ИК спектроскопии и элементного анализа мембран

Мембрана	Характеристические полосы, см ⁻¹	Содержание, % мас.			n:m*	
		Ν	Si	S	Cl	
ВГЭ-ВХ/БТМ-3	3300-3270, 1660-1550 (N–H), 1400-1100					
	(C=S), ~1040, 790-740, 450 (Si–O),	5.19	9.79	6.48	23.40	1.15:1
	1120-1000 (Si–O–C), 700-600 (C–Cl)					
ВГЭ-ВХ/ТЭАП	3450, 1550 (N–H), 1660-1580 (C=N),					
	1370-1330 (C _{anom} –N), ~1040, 790-740, 450					
	(Si–O), 1120-1000 (Si–O–C), 700-600	1.54	3.81	_	49.58	3:1
	(C–Cl), 3000-2900, 1250, 950-815,					
	880-750, 450 (эпоксигруппа)					

Физико-химические и электрические свойства гибридных мембран

Мембрана	T, °C	ВП, %	ИОЕ,	σ (φ = 75%),	E_A ,
			мг-экв/г	См/см	Дж/моль
	30	5.0		$3.52 \cdot 10^{-3}$	
$BГЭ-BX/ БТМ/H_3PO_4$	50	25.3	2.5	$3.92 \cdot 10^{-3}$	5.5
	80	40.9		$4.88 \cdot 10^{-3}$	
	30	6.8		1.19.10-3	
ΒΓЭ-ΒΧ/ ΤЭΑΠ/H ₃ PO ₄	50	43.5	1.6	$1.73 \cdot 10^{-3}$	15.11
	80	60.8		$2.89 \cdot 10^{-3}$	

Механические характеристики мембран

Модуль упругости при растяжении, МПа	Прочность при разрыве, МПа	Относительное удлинение при разрыве, %				
	ΒΓЭ-ΒΧ/ Б ΤΜ/Η ₃ ΡΟ ₄					
88	12	16				
	ВГЭ-ВХ/ТЭАП/Н ₃ РО ₄					
92	7	12				

Схема модельной структуры композитов

CCT-АДК-SiO,

(ΔЕ 13.25 кДж/моль; ΔG 10.19 кДж/моль),

Наличие двух молекул воды в **4-**B∏− составе мембран ГЭМА–SiO₂ позволяет объяснить более высокое удельной значение ИХ электропроводности ПО сравнению с мембранами ССТ-АДК-SiO₂ (4.7·10⁻² и 1.35·10⁻², соответственно).

жёлтый – <mark>S</mark>; красный – O; тёмносерый – С; светло-серый – Н; серозеленый – Si.

Ик Спектр рассчитан и полученный

Композитные мембраны SiO,:ПСК, SiO,:ФБИСК

Характеристические линии в ИК спектрах диоксида кремния, ароматических сульфокислот и гибридных мембран на их основе

	Диапазон, см ⁻¹ (интенсивность)						
Группа, связь	SiO ₂ *	ФБИСК	ПСК	ФБИСК-SiO ₂	ПСК-SiO ₂		
Si-O-Si	1110 (c)	-	-	1073 (c)	1137 (c)		
Si-OH	806 (сл)	-	-	798 (сл)	810 (сл)		
S(=O ₂)	-	1348 (cp)	1360 (cp)	1345 (cp)	1344 (cp)		
S=O	-	1028 (cp)	1118 (cp)	1027 (cp)	1020 (cp)		
Ароматическое	-	1565 (cp)	1550 (cp)	1568 (cp)	1551 (cp)		
кольцо Пиридиновый азот	_	1629 (cp)	1618 (cp)	1629 (cp)	1617 (cp)		
P=O	-			1235 (cp)	1228 (cp)		
Р-О-Н				991 (cp)	991 (cp)		
Водородная связь	3100-2900 (c)	3200-3000 (c)	3200-3000 (c)	3700-2800 (ш, сл)	3700-3100 (ш, сл)		

Характеристики экспериментальных и промышленных мембран ($\phi = 75\%$)

Показа	атель	Мембрана					
		ФБИСК-SiO ₂ /	ПСК-SiO ₂ /H ₃	Nafion 212	МФ-4		
		H ₃ PO ₄	PO		СК		
S, c	M ²	0.139	0.139	0.139	0.139		
d, c	CM	0.012	0.0123	0.005	0.012		
Е, кДж	к/моль	21.73	24.93	17.04	29.92		
	Т=303 К	270	71.94	2.55	10.75		
R , Ом	Т=318 К	210	46.50	2.00	6.00		
,	Т=338 К	115	25.75	1.20	2.98		
	Т=353 К	86.33	16.03	1.01	2.00		
σ, См/см·10 ²	Т=303 К	0.032	0.12	1.4	0.8		
	Т=318 К	0.041	0.19	1.8	1.4		
	Т=338 К	0.075	0.34	3.0	2.9		
	Т=353 К	0.10	0.55	3.6	4.3		
Ионообменн	ая емкость,	2.70	1.84	0.95	0.84		
МГ.ЭІ	кв/г						

Механические характеристики мембран

Мембрана	Модуль упругости,		Прочно	сть при	Относительное	
	МПа		разрыве, МПа		удлинение при	
					разрыве, %	
	$\varphi = 50 \%$	$\varphi = 100 \%$	<i>φ</i> =50%	$\varphi = 100 \%$	$\varphi = 50 \%$	$\varphi =$
						100 %
ПСК-SiO ₂ /H ₃ PO ₄	113	128	4	2	18	3
ФБИСК- SiO_2/H_3PO_4	137	191	6	2	5	1
Nafion 212	160	132	25	15	316	246

Вольт-амперные характеристики полученных

мембран: 1 – Nafion, 2 – 4-ВП-ГЭМА-SiO₂/H₃PO₄, 3 – ФБИСК-SiO₂/H₃PO₄, 4 – ПСК-SiO₂/H₃PO₄