Элементы и структура Систем автоматического правления строительными процессами

Выполнила: студентка группы Спр-81 Алиева Катрина Автоматика и автоматизация производственных процессов в строительстве в настоящее время базируется на элементной базе, содержащей электрические, электромеханические, магнитные, гидравлические и другие устройства. На базе использования мини - и микро -ЭВМ, микропроцессорной техники, роботов и манипуляторов стало возможным внедрение самонастраивающихся и самообучающихся автоматических систем, реализующих сложные законы управления.

Управление объектом с помощью технических средств без участия человека называется автоматическим управлением.

TAY

Теория автоматического управления (ТАУ) это
наука, которая изучает
процессы управления и
проектирования систем
автоматического
управления, работающих
по замкнутому циклу с
обратной связью.

• Совокупность объекта управления и средств автоматического управления называется системой автоматического управления (САУ). Основной задачей автоматического управления является поддержание определенного закона изменения одной или нескольких физических величин в объекте управления.

Функциональная схема системы автоматического управления

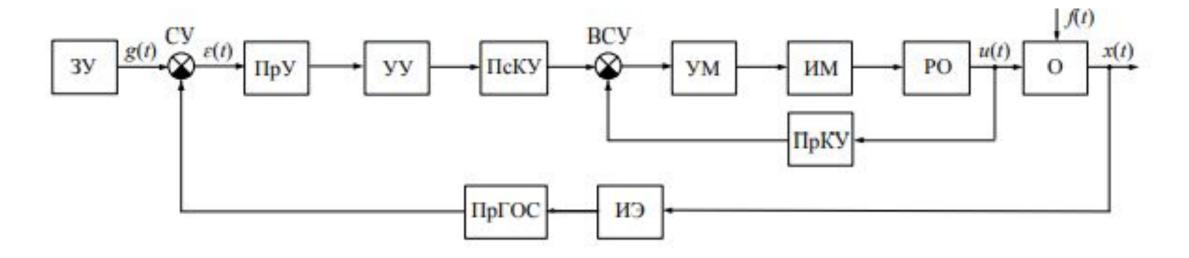
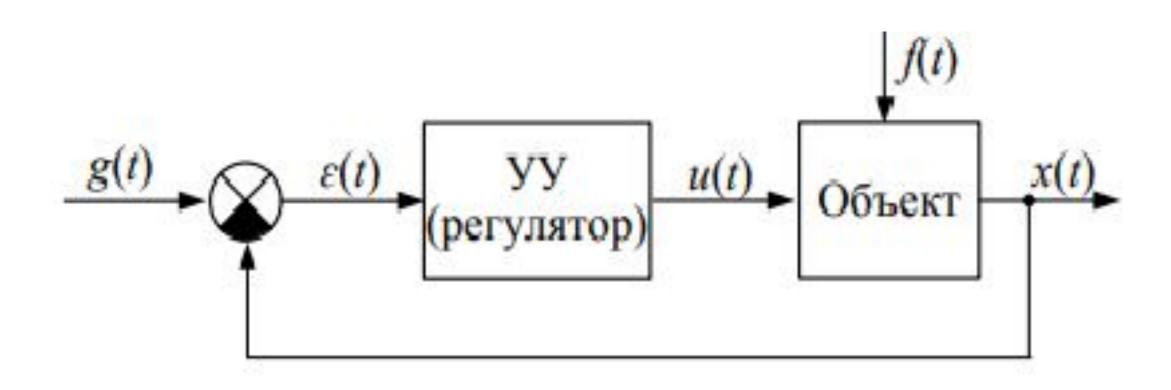



Рис. 1 - Функциональная схема САУ (САР) по отклонению

Упрощенная функциональная схема САУ по отклонению

Перечень функциональных блоков типовой функциональной схемы САУ приведен в таблице

Функциональ- ный блок	Описание функционального блока Задающее устройство			
3У				
СУ	Сравнивающее устройство для сравнения заданного и дей- ствительного значений регулируемой величины			
ПрУ	Преобразующее устройство			
уу	Управляющее устройство (регулятор), реализующее закон ре гулирования			
ПсКУ	Последовательное корректирующее устройство для придан системе нужных динамических свойств			
ВСУ	Вспомогательное сравнивающее устройство для суммирова- ния сигналов местной обратной связи			
УМ	Усилитель мощности управляющего сигнала			
ИМ	Исполнительный механизм			
PO	Регулирующий орган			
0	Объект управления			
ПрКУ	Параллельное корректирующее устройство для увеличения быстродействия исполнительного устройств			
Ю	Измерительный элемент регулируемой величины			
ПрГОС	Преобразователь сигнала главной обратной связи			

темы в топалической стретемия можно

1. По павтоматического

- · САУ ПО ВОЗМУЩЕНИЮ: · САУ ПО ВОЗМУЩЕНИЮ:
- комбинированные САУ. 24
- 2. По алгоритму функционирования:
- · системы стабилизации (g(t) = const);
- · заданная f(t)]; системы программного управления [g(t)
- неизвестная функция). следящие системы (g(t)

3. По характеру функционирования:

- · обычные;
- 2 T 2 T T I D U L I D .

4. По Классификация систем

- · непрерывные;
- диска В ТОМАТИЧЕСКОГО
- · цифровые;
- · реле**у** правления
- · импульсные.

5. По виду математического описания:

- · линейные:
- · стационарные;
- · нестационарные;
- · нелинейные:
- · стационарные;
- · нестационарные.

6. По количеству координат объекта управления:

- · одномерные;
- многомерные:
- · связанного управления;

