ITMO UNIVERSITY

Saint Petersburg, Russia

Creation of light-emitting structures based on CdSe nanoplatelets

Ruslan Azizov PhD student 1st year Scientific supervisor: Sergey Makarov Faculty of Physics

Introduction

Light-emitting structures based on CdSe nanoplatelets

Advantages of CdSe nanoparticles:

- 1) Narrow photoluminescence band
- 2) Short photoluminescence lifetime
- 3) Low Auger recombination rate

Disadvantages of CdSe nanoparticles :

1) High photochemical degradation rate
2) Large number of nonradiative energy relaxation channels

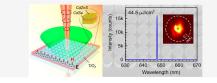
Ultralow Threshold Optical Gain Enabled by Quantum Rings of Inverted Type-I CdS/CdSe Core/Crown Nanoplatelets in the Blue

Savas Delikanli, Furkan Isik, Farzan Shabani, Hamed Dehghanpour Baruj, Nima Taghipour, and Hilmi Volkan Demir*

Single-Mode Lasing from a Single 7 nm Thick Monolayer of Colloidal Quantum Wells in a Monolithic Microcavity

Sina Foroutan-Barenji, Onur Erdem, Savas Delikanli, Huseyin Bilge Yagci, Negar Gheshlaghi, Yemliha Altintas, and Hilmi Volkan Demir* Self-Resonant Microlasers of Colloidal Quantum Wells Constructed by Direct Deep Patterning

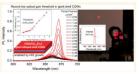
Negar Gheshlaghi, Sina Foroutan-Barenji, Onur Erdem, Yemliha Altintas, Farzan Shabani, Muhammad Hamza Humayun, and Hilmi Volkan Demir*



Articles, underlying proposed approach:

NANO

Room-Temperature Lasing in Colloidal Nanoplatelets via Mie-Resonant Bound States in the Continuum


Mengfei Wu,[⊥] Son Tung Ha,[⊥] Sushant Shendre, Emek G. Durmusoglu, Weon-Kyu Koh, Diego R. Abujetas, José A. Sänchez-Gil, Ramón Paniagua-Domínguez, Hilmi Volkan Demir,* and Arseniy I. Kuznetsov*

Giant Alloyed Hot Injection Shells Enable Ultralow Optical Gain Threshold in Colloidal Quantum Wells

Yemliha Altintas,^{†,‡,⊥} Kivanc Gungor,^{†,⊥} Yuan Gao,^{8,⊥}, Mustafa Sak,[†] Ulviyya Quliyeva,[†] Golam Bappi,[§] Evren Mutlugun,^{&†,‡}, Edward H. Sargent,^{& 8,0} and Hilmi Volkan Demir^{&,†,}I

ITMO UNIVERSITY

Development and experimental investigation of resonant nanostructures based on CdSe nanoplatelets for low-threshold laser generation

TMO UNIVERSITY

(full research cycle including numerical modelling, fabrication and post-processing of CdSe NPL films, and measurement of emission characteristics)

PLAN for 2021-2025

Refinement of solution-based fabrication methods for creation of CdSe NPL films

- Spin coating
- Self-assembly

Development of designs of optical resonators (metasurfaces) for CdSe photoluminescence enhancement and lasing

- Fourier modal method calculations
- Full wave numerical modelling

Fabrication of optical resonators from CdSe films

 \bullet Laser ablation / force lithography / focused ion beam milling / \ldots

Experimental studies of the fabricated structures

• Photoluminescence -> Amplified spontaneous emission -> Lasing with optical pump

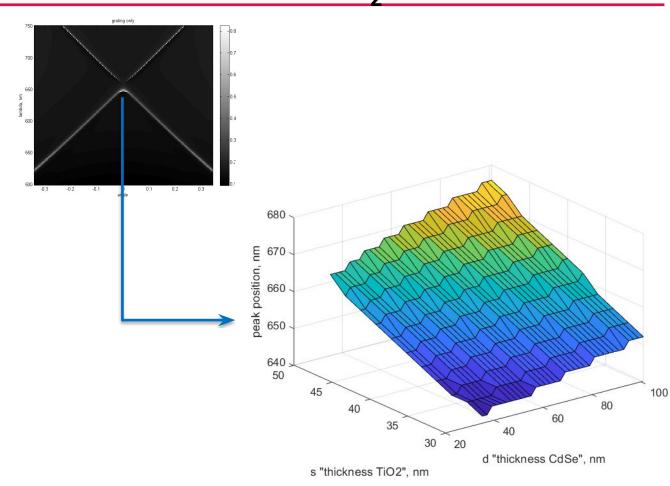
Exploring the possibility of electrically pumped lasing in CdSe nanostructures

Designing the carrier injection layers -> numerical modelling -> fabrication -> testing -> repeat

Results: Work plan

5

- 1) Calculations of high Refractive index layer thickness
- 2) Synthesis of ini CdSe NPL solution
- 3) Creation of CdSe NPL films by spin-coating method on Silicon substrate
- 4) Measuring the roughness and thickness of films on AFM setup
- 5) Applying an additional TiO₂ layer to silicon substrates
- 6) Refractive index measurements of the TiO₂ and CdSe layers
- 7) Creation of CdSe NPL films by Self-Assembling method
- 8) Measuring the roughness of films on AFM setup
- 9) Creation of CdSe NPL films modified substrates
- 10) ASE measurements

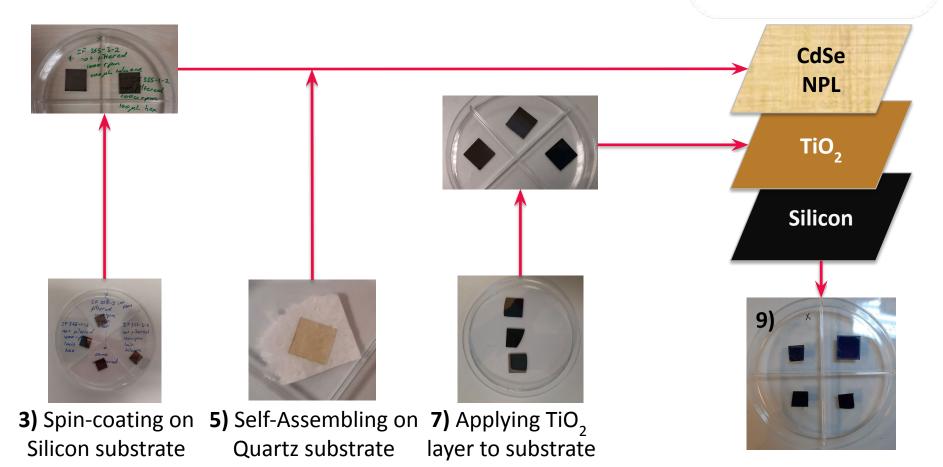

1) Calculation of TiO, layer thickness

ITMO UNIVERSITY

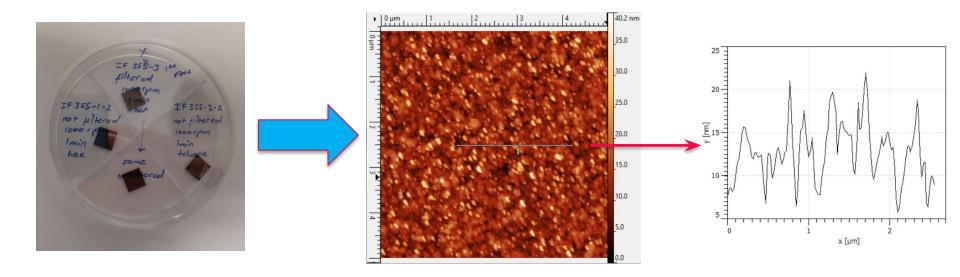
6

Estimated layer thicknesses:

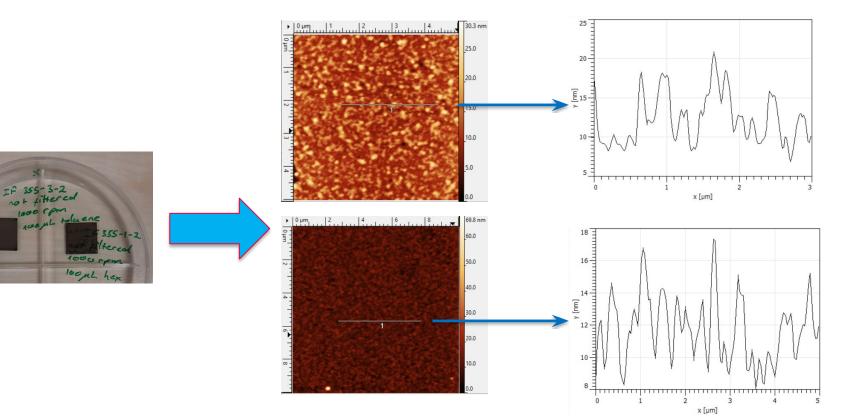
TiO ₂ (nm)	CdSe (nm)
38	47
36	49
34	59
32	69
30	81

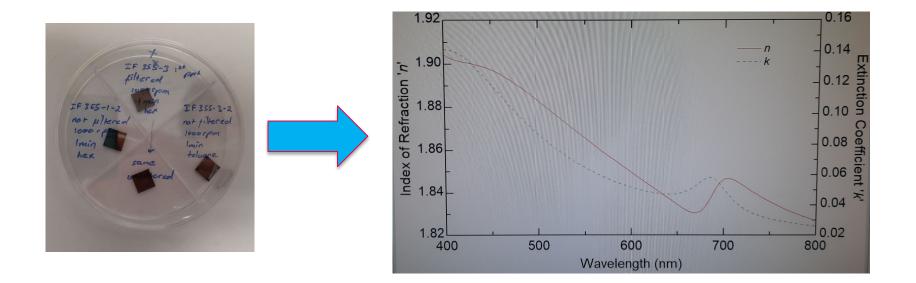

2) Synthesis of ini CdSe NPL solutions

Two groups of solutions were prepared:1) Centrifugation of the ini solution, and then redissolution of the precipitate in hexane2) Centrifugation of the supernatant and then redissolution in hexane or toluene



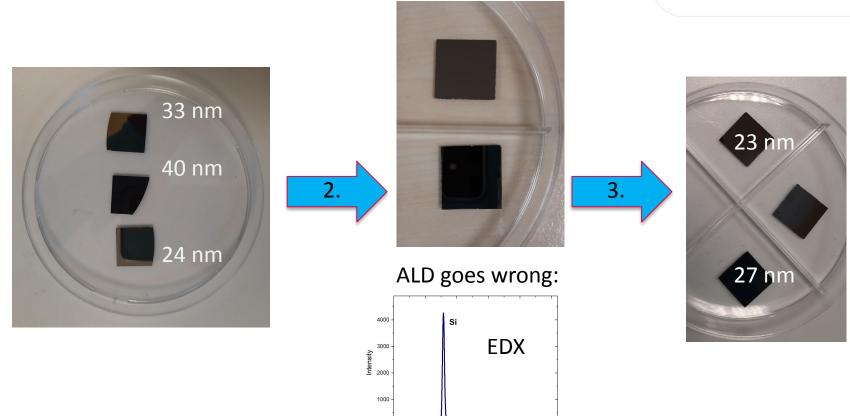
4) AFM measurements:


From Hexane:


4) AFM measurements:

From Toluene:

6) Ellipsometry of CdSe layer on Silicon substrate ITMO UNIVERSITY



11

5) Applying TiO₂ layer to substrates

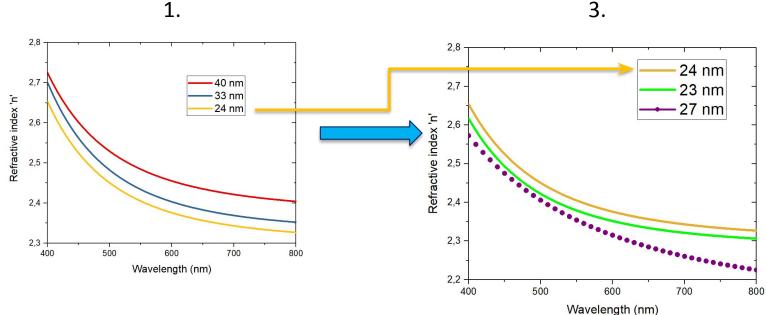
1.

1000

Ó

2000

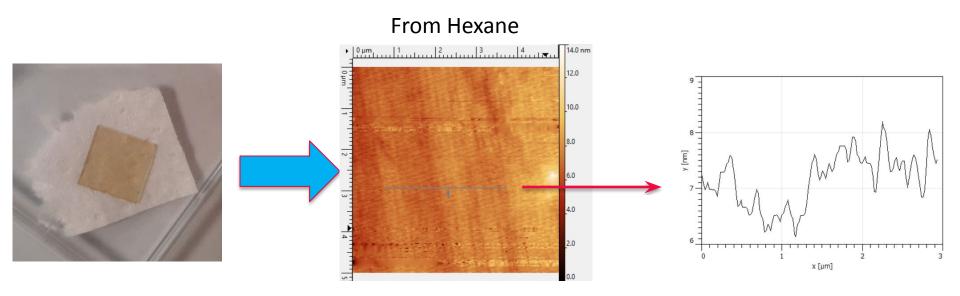
3000


keV

4000

5000

6) Ellipsometry of TiO₂ layer on Silcon substrate

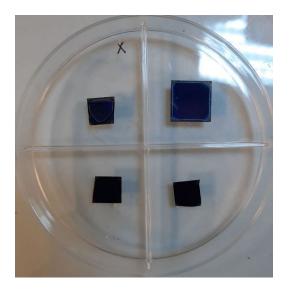


3.

UNCM excellence in science and technology 7-8) Self-Assembling on Quartz substrate **ITMO UNIVERSITY**

14

AFM measurements:



9) CdSe NPL films on modified substrate

Self-Assembling:

Today

Spin-coating:

Thank you for your attention!

