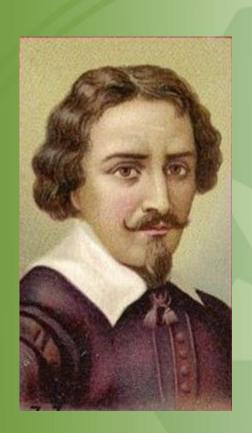
Цитология – наука о клетке.Строение клетки.

Цели создания учебной работы:

- четко и понятно для любого ученика описать клетку,
- подробно рассказать об истории развития науки о клетке и о людях, изучавших клетку,
- а также вызвать интерес учащегося к предмету с помощью многочисленных фотографий, рисунков и примеров.

История изучения клетки


История изучения клетки неразрывно связана с развитием микроскопической техники и методов исследования.

В тайну клеточного строения человек смог проникнуть только благодаря изобретению микроскопа в конце XVI столетия

Захарий Янсен

1590 год

• Соединив вместе две линзы, впервые изобрел примитивный микроскоп

Роберт Гук

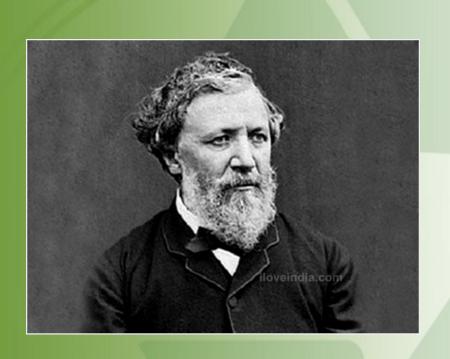
1665 год Впервые описал строение коры пробкового дуба и стебля растений, ввел в науку термин «клетка».

Антони ван Левенгук

Вторая половина XVII века

- Усовершенствовал микроскоп.
- Наблюдал и зарисовал ряд простейших, сперматозоиды, бактерии, эритроциты и их движение в капиллярах.
- Открыл бактерии.

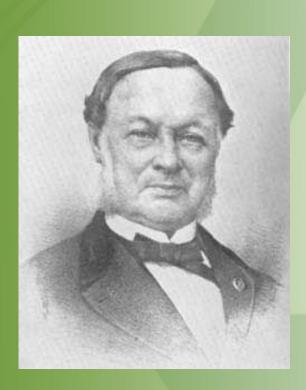
Карл Бэр



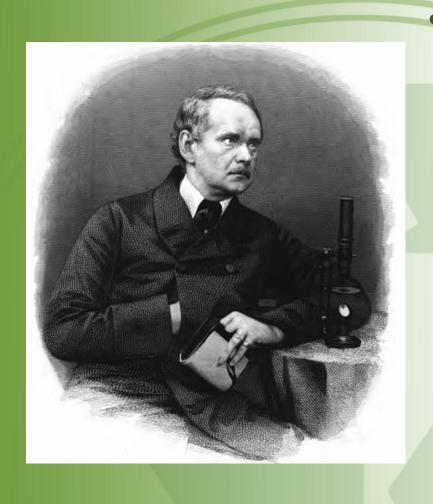
 Обнаружил яйцеклетку млекопитающих

Вывод: каждый организм развивается из одной клетки

Роберт Броун



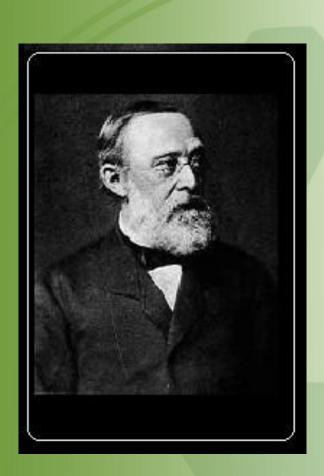
1831-1833 гг.


Обнаружил в растительных клетках ядро – важнейшую составную часть клетки.

Клеточная теория

• В 1839 г. Теодор Шванн издал в Берлине книгу «Микроскопические исследования о соответствии в структуре и росте животных и растений», в которой он сформулировал клеточную теорию.

• При создании клеточной теории Т. Шванн исходил из открытия М. Шлейдена в 1838 г. клеточного строения растений и гомологичности происхождения клеток.


Первая версия клеточной теории

- Все организмы, и растительные, и животные, состоят из простейших частей клеток.
- Клетка индивидуальное самостоятельное целое.
- В одном организме все клетки действуют совместно, формируя гармоничное единство.

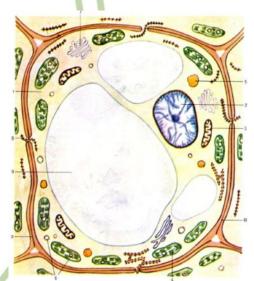
Рудольф Вирхов

1858 год

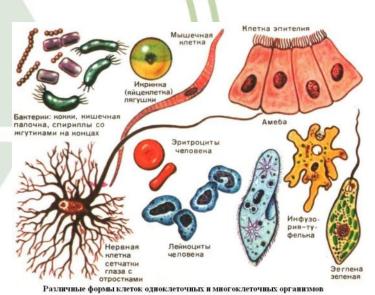
• Доказал, что клетки возникают из клеток путем размножения, что дополнило клеточную теорию.

XIX век

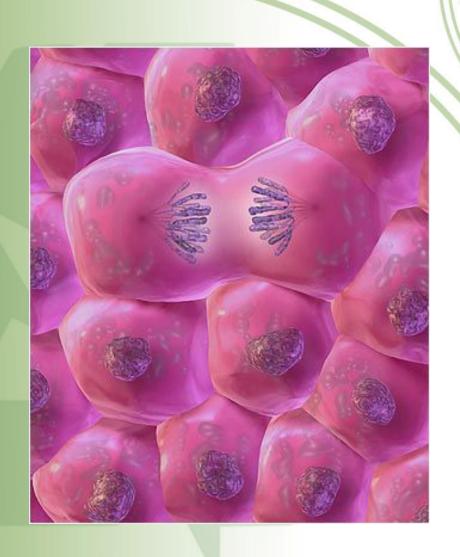
- Открыты основные структуры клеток.
- Изучен процесс деления клетки.
- А. Вейсман установил: хранение и передача наследственных признаков в клетке осуществляется с помощью ядра.



• Клетка – элементарная единица живого.

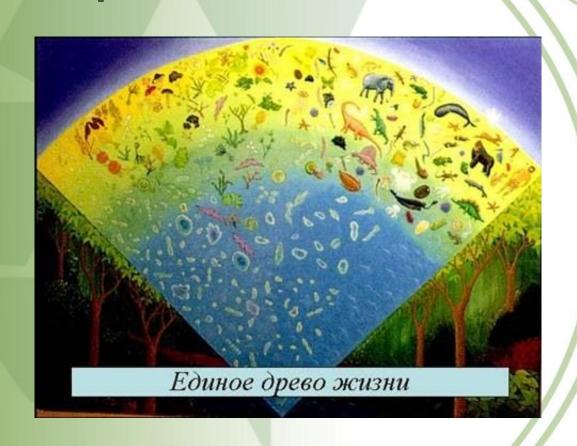

Клетка является наименьшей структурно-функциональной единицей живого и представляет собой открытую, саморегулирующуюся, самовоспроизводящуюся систему.

Вне клетки жизни нет.



• Все клетки сходны по своему химическому составу и имеют общий план строения.

Клетки обладают и специфическими особенностями, связанные с выполнением специальных функций и возникающими в результате клеточной дифференцировки.



 Клетка происходит только от клетки.

• Многоклеточные организмы представляют собой сложно организованные интегрированные системы, состоящие из взаимодействующих клеток.

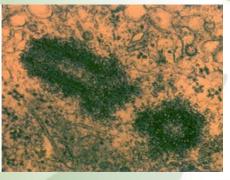
• Сходное клеточное строение организмов – свидетельство того, что все живое имеет единое происхождение.

СТРОЕНИЕ КЛЕТКИ.

Несмотря на многообразие форм, организация клеток всех живых организмов подчинена единым структурным принципам. Содержимое клетки отделено от окружающей среды плазматической мембраной, ИЛИ Внутри плазмалеммой. клетка заполнена цитоплазмой, которой В расположены различные органоиды клеточные включения, также a генетический материал виде молекулы ДНК.

Каждый из органоидов клетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом. Ниже приведена схема важнейших органелл клетки и ее строение.

Ядро - обязательная составная часть клетки у простейших, многоклеточных животных и растений, содержащая хромосомы и продукты их деятельности. По наличию или отсутствию в клетках ядра все организмы делят на эукариот, имеющих четко оформленное ядро, и прокариот (отсутствие ядерной оболочки).


В ядре хранится наследственная информация клетки. Гены, содержащиеся в хромосомах, играют главную роль в передаче наследственных признаков в ряду клеток и организмов.

Эндоплазматическая сеть - внутриклеточный органоид, представленный системой плоских цистерн, канальцев и пузырьков, ограниченных мембранами.

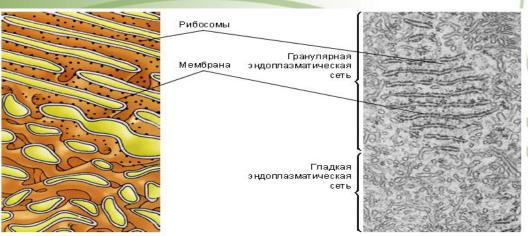
ЭПС обеспечивает главным образом передвижение веществ из окружающей среды в цитоплазму и между внутриклеточными структурами.

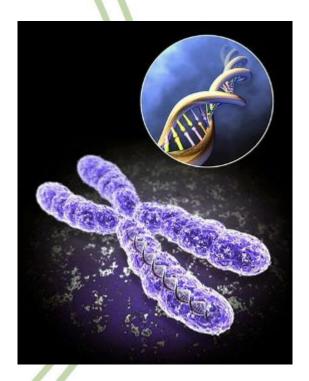
Клеточный центр и центриоли клетки.

ЦЕНТРИОЛИ - две (иногда более) цилиндрические структуры диаметром ок. 0,15 мкм, образующие клеточный центр всех животных и некоторых растительных клеток. При делении клетки центриоли расходятся к ее полюсам, определяя ориентацию веретена деления.

ВЕРЕТЕНО ДЕЛЕНИЯ— система микротрубочек в делящейся клетке, обеспечивающая расхождение и строго одинаковое (при митозе) распределение хромосом между дочерними клетками.

Эндоплазматическая сеть



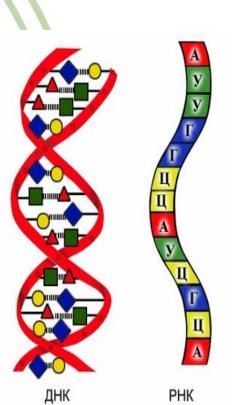

Рис. Эндоплазматическая сеть: гладкая и гранулярная структуры. Рядом фотография с увеличением в 10 000 раз

ХРОМОСОМЫ являются важнейшей составной частью клеточного ядра. В неделящихся клетках они имеют форму тончайших хроматиновых нитей и поэтому не видны. Во время деления нити хроматина спирально накручиваются на особые белки. Так образуются хромосомы. Каждая хромосома состоит из двух спирально свернутых молекул ДНК, или хроматид.

Хромосомы

Хромосомы являются важнейшей составной частью клеточного ядра. В неделящихся клетках они имеют форму тончайших хроматиновых нитей и поэтому не видны. Во время деления нити хроматина спирально накручиваются на особые белки. Так образуются хромосомы. Каждая хромосома состоит из двух спирально свернутых молекул ДНК, или хроматид. В определенных местах хромосомы образуется одна или несколько перетяжек. Одна из них называется первичной, или центромерой.

ДЕЗОКСИРИБОНУКЛЕИНОВЫЕ КИСЛОТЫ (ДНК)— носитель

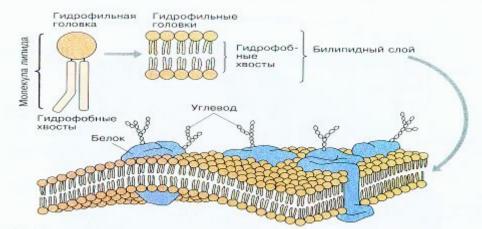

генетической информации, ее отдельные участки соответствуют определенным генам, содержится во всех живых клетках. Молекула ДНК состоит из 2 полинуклеотидных цепей, закрученных одна вокруг другой в спираль. Цепи построены из большого числа мономеров 4 типов — нуклеотидов, специфичность которых определяется одним из 4 азотистых оснований (аденин, гуанин, цитозин, тимин).

Сочетания трех рядом стоящих нуклеотидов в цепи ДНК (триплеты, или кодоны) составляют код генетический.

Рибонуклеиновые кислоты

Различия в строении ДНК и РНК определяются содержанием различных углеводов - дезоксирибозы и рибозы. За редким исключением все РНК состоят из одиночных полинуклеотидных цепей. Их многомерные единицы содержат основания: аденин, гуанин, цитозин и урацил.

РНК точно копируют информацию, записанную в ДНК и передают ее в рибосомы, где происходит синтез нужного белка.



Комплекс Гольджи

Гольджи комплекс(по имени К. Гольджи), представляет собой стопку мембранных мешочков и связанную с ними систему пузырьков. На наружной, вогнутой стороне стопки из пузырьков (отпочковывающихся, по-видимому, от гладкой эндоплазматической сети) постоянно образуются новые цистерны, на внутренней стороне цистерны превращаются обратно в пузырьки. Основной функцией аппарата Гольджи является транспорт веществ в цитоплазму и внеклеточную среду, а также синтез жиров и углеводов, в частности, гликопротеина муцина, образующего слизь, а также воска, камеди и растительного клея. Аппарат Гольджи участвует в росте и обновлении плазматической мембраны и в формировании лизосом. Цистерны аппарата

Пузырьки аппарата

Плазматическая мембрана


Служит не только механическим барьером, но, главное, ограничивает свободный двусторонний поток в клетку и из нее низко- и высокомолекулярных веществ.

Плазматическая мембрана в клетках всех живых организмов устроена одинаково. Ее толщина составляет 8 нм. Она состоит из сплошного двойного слоя липидных молекул.

Митохондрии (от греч. mitos —

нить и chondrion — зернышко, крупинка), органельных и растительных клеток. В митохондри протекают окислительно-восстановительные реакции, обеспечивающие клетки энергией. Число митохондрий в одной клетке от единиц до нескольких тысяч.

У прокариот отсутствуют (их функцию выполняет клеточная мембрана).

Рибосомы - очень мелкие органоиды клетки, образованные рибонуклеиновыми кислотами и белками. Каждая рибосома состоит из двух частиц – малой(2) и большой(1). Образуются рибосомы в ядрышке, после чего поступают в цитоплазму. Основной функцией рибосом является синтез белков.

ЛИЗОСОМЫ (от lysis — разложение и греч. some тело) представляют собой мембранные мешочки наполненные пищеварительными ферментами. Особенно много лизосом в животных клетках, здесь их размер составляет десятые доли микрометра. Лизосомы расщепляют питательные вещества, переваривают попавшие в клетку бактерии, выделяют ферменты, удаляют путём переваривания ненужные части клеток.

•Лизосомы также являются «средствами самоубийства» клетки: в некоторых случаях (например, при отмирании хвоста у головастика) содержимое лизосом выбрасывается в клетку, и она погибает.

Пластиды

(от греч. plastos — вылепленный), цитоплазматические органоиды растительных клеток. Нередко содержат пигменты, обусловливающие окраску пластиды. У высших растений зеленые пластиды хлоропласты, бесцветные лейкопласты, различно окрашенные — хромопласты; у большинства водорослей пластиды называют хроматофорами.