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Announcements

® Read Chapter 7

® Homework 6 1s due on Tuesday April 15




Simultaneous Implicit
T

® The other major solution approach 1s the simultaneous

implicit in which the algebraic and differential
equations are solved simultaneously

® This method has the advantage of being numerically
stable




Simultaneous Implicit

® Recalling the first lecture, we covered two common

implicit integration approaches for solving * = f(x)
x(ltj +At) = x(t) + Af (x(¢ + Ar))

For a linear system we have

x(t+Af)=[1 - At Al x(1)

— Backward Euler

At
_ Trapezoidal X(t + At) — X(t) +7|:f(x(f)) + f(X(f + Al‘))i|

For a linear system we have

x(t+At)=[I-AtA]” {] +%A} x(¢)




Nonlinear Trapezoidal

® We can use Newton's method to solve X~ f(x) with
the trapezoidal

—x(t+At) +x(¢) +%(f(x(t + A1)+ (x(1))) =0

®* We are solving for x(t+At); x(t) 1s known

® The Jacobian matrgx 1s 7
X

1 aX:n
At / / /
J(X(f+At)):7 X X X —1
o . o

Ox, Ox

n

- - 5




Nonlinear Trapezoidal using
Newton's Method

® The full solution would be at each time step

— Set the 1nitial guess for x(t+At) as x(t), and initialize the
iteration counter k =0

— Determine the mismatch at each At?ration k as
h(x(1+A)™ )1 —x(1+ A0 +x(2) + 7(f (x(t+ AN ) +1 (x(t)))

— Determine the Jacobian matrix

X0 = x(+ A =[x+ A0 ] h(x(+ A0

— Iterate until done




Infinite Bus GENCLS Implicit Solution
T

® Assume a solid three phase fault is applied at the

generator terminal, reducing P_ to zero during the
fault, and then the fault is self-cleared at time T¢'
resulting in the post-fault system being 1dentical to the

pre-fault system

— During the fault-on time the equations reduce to

do
dt] =Aw, 0,
dAw ]

— 1-0
dt 2><3( )




Infinite Bus GENCLS Implicit Solution
T

® The initial conditions are
o — 0(0) B 0418
x(0)= @, (0) 1o

® Let At=0.02 seconds

® During the f%@ TblaTlS 3. 77}

J(x(t+A1))=—-

° S tﬂﬁ itiad guess for x(0.02) as x(0), and
0.1667




Infinite Bus GENCLS Implicit Solution
T

® Then calculate the initial mismatch

h(x(0.02)” )8 —x(0.02)"” +x(0) + %(f (x(0.02)” )+ 1 (x(())))

* With x(0.02)Y) = x(0) this becomes
. (x(() 02)(0))__ 0.418 . 0.418 L 0.02 0 . o N[ o
’ - 0 0 2 \lo.167| 0.167|] |0.00334

o _
Txl(loegZ)m_ 04181 -1 3777 0 7 [04306
' 0 0 -1 0.00334 | |0.00334




Infinite Bus GENCLS Implicit Solution

T
® Repeating for the next iteration

o [ 1.259
f(x(0.02)")= {01667}
S Feee B el )
0.0
] {o.o}
0.4306
® Hence we have converged with X(0.02) = {0,0() 3 34}
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Infinite Bus GENCLS Implicit Solution
T

® Jteration continues until t = T¢'** assumed to be 0.1

seconds in this example
0.7321
x(0.10) =
0.0167

® At this point, when the fault is self-cleared, the equations
Cglange, requiring a re-evaluation of f(x(T¢'*"))

—=Aow_®
dz_ pu S

) 6.30
dAw,, | ( 1281 5) f(x(0. )):{—0.1078}
d 6\ 052
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Infinite Bus GENCLS Implicit Solution

T
® With the change in f(x) the Jacobian also changes

0.02] 0 o -1 377
J(x(0.127)) === -1 =
(x(0.12) 2 {—0.305 0} {—0.00305 —1}

® Iteration for x(0.12) 1s as before, except using the new

function and new Jacobian
h(x(0.12)") B —x(0.12)"” +x(0.01) +'7(f(x(0.12)<0>)+f(x(0.10+)))

. [0.7321 ~1 3.777'[ 0.1257 0.848
x(0.12)" = _ _
0.0167 | |-0.00305 -1 | |-0.00216| |0.0142

‘This also converges quickly, with one or two iterations




Computational Considerations
T

® As presented for a large system most of the computation

1s associated with updating and factoring the Jacobian.
But the Jacobian actually changes little and hence
seldom needs to be rebuilt/factored

® Rather than using x(t) as the initial guess for x(t+At),

prediction can be used when previous values are

available
x(t+ A" =x(¢) + (x(t) —X(t - At))
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Two Bus Results

® The below graph shows the generator angle for varying

values of At; recall the implicit method 1s numerical

Y

ctahle

Generator Angle (Radians)

T
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Adding the Algebraic Constraints
T

® Since the classical model can be formulated with all the

values on the network reference frame, initially we just
need to add the network equations

®* We'll again formulate the network equations using the
form I(x,y)=YV or YV-I(x,y)=0

® As before the complex equations will be expressed

using two real equations, with voltages and currents
expressed in rectangular coordinates
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Adding the Algebraic Constraints

® The network equatigns are as betore _

(G i = BV i)~ L (x:3) =0
k=1

| V1 | Z (Gz'kVQk + By Vpr ) —1 NOI1 (x,y)=0
V k=1
o1 i
Vo D NGV =BV or ) = Iypa(%,y) = 0
y=| | gxy)- k:l( or ) ’
¥
VDn
Von 2. (GnkVDk ~B.Vox ) — I yp,(%y) =0

=
[

143
143

Z (GnkVQk +b5,V ke ) —Iyon (x,y)=0

o
[y
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Classical Model Coupling
of x and

® In the simultaneous implicit method x and y are

determined simultaneously; hence 1n the Jacobian we
need to determine the dependence of the network
equations on x, and the state equations on 'y

® With the class;pglgnodel the Norton cyrrent depends on
xas V° R, +jX,, G+ Ib TR+ X,

Ly, =1+ jl,y = E/(cosé, + jsind, )(G, + jB,)
E .+]E = E/(cos$, + jsind,)
Iy = Ep,G — E,, B,

/ ONi — by B+ EQiGi
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Classical Model Coupling
of x and

® The 1n the state equations the coupling with y 1s

recognized by noting

Po,=Ep 1 + EQz']Qz'

Iy, + j]Qz' = ((EDi =V ) +J (EQz' B VQi )) (Gi +JbB, )
]Di = (EDi _VDi)Gz' - [EQz' _VQi)Bi

Qi

PEi ED:‘ ((EDz' - VDz‘ )Gi - (EQJ' - VQi)Bi ) T EQ:‘ ((EDz' - VDz‘ ) Bz' T (EQJ' - VQz‘)Gz')
(Ezz)z‘ _EDz‘VDz‘)Gz‘ T (Eéz — LoV, )Gz' T (EDiVQi _EQiVDi)Bi

1, =(Ey -Vy,) B +(Ey 7, )G,

PEi

Qi" Qi
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Variables and Mismatch Equations

® In solving the Newton algorithm the variables now

include x and y (recalling that here y 1s just the vector
of the real and imaginary bus voltages

® The mismatch equations now include the state

iﬂt%gti(?}akﬁ)ﬂlations

—x(t+A)® +x(£) + %(f (x(t+ AN, y(t + AD® ) + £ (x(0). y(t)))

" At slegbi o
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Jacobian Matrix

® Since the h(x,y) and g(x,y) are coupled, the Jacobian 1s
J(x(t+ AP, y(1+An)*)

Oh(x(r+An0© . y(r+A0®)  oh(x(e+A)® y(e+A)P)
_ 2 oy
| g (x(t+A0)® y(t+A0)P)  og(x(t+A0)", y(t+An)®)
i OX oy |

T

— With the classical model the coupling 1s the Norton current at

bus 1 depends on o, (1.¢., x) and the electrical power (P_) in
the swing equation depends on V. and VQi (i.e.,y)
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Jacobian Matrix Entries
T

® The dependence of the Norton current injections on 9 is
=FE/cosd.G,—E/sino B,

IDN i

I,y = E/cosé,B, + E]sin0,G,

Ol =—FE'sind,G, — E/ cosd.B,
00,

Ol ,y; :
86 = _El" SIn 51'Bl' + El" COS 6iGi

1

— In the Jacobian the sign is flipped because we defined
g(x,y) =YV-IxYy)
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Jacobian Matrix Entries
T

® The dependence of the swing equation on the generator

~terminal voltage is
0, =Ao, O

ipu~"s

A.Coi,pu = ﬁ(PMi _PEz’ _Di (Acoi,pu ))
Py, = (Ef)i _EDiVDi)Gi +(Eéi _EQiVQi)Gz' T (EDiVQi _EQiVDi)Bi

OA®. ]

aVzu i (£,G,+E,B)
Ao, ., |
8VQ:D T2H (EoG = EoiB)
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Two Bus, Two Gen GENCLS Example

®* We'll reconsider the two bus, two generator case from
Lecture 18; fault at Bus 1, cleared after 0.06 seconds

— Initial conditions and Ybus are as covered in Lecture 18

GENCLS Bus1 GENCLS
@>>>>>>>>>>>>>) >
11.59 Deq 0.00 Dea
1.095 nu 1.000 pu

PowerWorld Case B2 CLS 2Gen
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Two Bus, Two Gen GENCLS Example

® Initial terminal voltages are
Vi + Vo, = 10726+ j0.22, V,,+ jV,, = 1.0

E, =1.281£23.95°, E,=0.955/—12.08
11709+ j0.52

I =1.733—73.903
M 70.3 /
7 - 0.934.3—10.2 146714
j0.2
- 0 _
Vovy 4 j0.333 {—]7.879 14.545}

j4.545 —j9.545

T
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Two Bus, Two Gen Initial Jacobian

0, Aw, 0, Ao, Vo, Vo Vo, Voo
5, -1 377 0 0 0 0 0 0
Ao, -0.0076 -1 0 0  —0.0029 0.0065 0 0
s, 0 0 -1 377 0 0 0 0
Ao, 0 0  -0.0039 -1 0 0 0.0008 0.0039
I, -390 0 0 0 0 7879 0 —4.545
1, -173 0 0 0 -7879 0 4545 0
I, 0 0  —467 0 0  —4545 0  9.545
I, 0 0 100 0 4545 0  -9545 0
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Results Comparison

® The below graph compares the angle for the generator

at bus 1 using At=0.02 between RK2 and the Implicit
Tranezoidal: also Imnlicit with At=0.06

RK2, 0.02

- |mplicit, 0.02

Implicit, 0.06

wv
2] l ~—| | [ A

0 0.5 A5 1.5 2 2.5 3 3.5 4 4.5 5

Simulation Time (Seconds)




Four Bus Comparison

Bus 1 Bus 2

@ENAS Bsd PP PP PP OO > >N

X=0.1
@>»

7.72 Den
1055100 |
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Four Bus Comparison

Generator 1 Angle

2

3

3

3

N
S

3

0.5

Simulation TiRe (Secondg) 2:5 3
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