Системы автоматизированного проектирования (САПР)

В последние годы в инженерной практике вычислительная техника широко применяется для выполнения расчетов, автоматизации проектирования, организации и планирования экспериментальных исследований, для обработки результатов испытания машин, механизмов, аппаратов и для многих других целей.

Термин САПР "Система автоматизированного проектирования" (в английской нотации **CAD**) появился в конце 50-х годов. Первые CAD-системы появились десять лет спустя.

Проектирование — это процесс создания описания, необходимого для построения в заданных условиях еще несуществующего объекта.

Выделим 3 основных способа реализации проектирования:

- 1. Если весь процесс проектирования осуществляется человеком, то проектирование называют *неавтоматизированным*.
- 2. Проектирование, при котором происходит взаимодействие человека и ЭВМ, называется *автоматизированным*.
- 3. Проектирование, при котором все преобразования описаний объекта и алгоритма его функционирования осуществляется без участия человека, называется

Система автоматизированного проектирования (САПР) — организационнотехническая система, состоящая комплекса И3 средств автоматизации проектирования, взаимосвязанного с подразделениями проектной организации или (пользователей системы) специалистов И коллективом выполняющая автоматизированное проектирование.

Из этого определения следует, что САПР — это не средство автоматизации, а система деятельности людей по проектированию объектов. Идеальная схема функционирования САПР представлена на рисунке, где КСА – комплекс технических средств:

Проектировщики, как следует из определения, относятся к САПР. Это утверждение вполне правомерно, т. к. САПР – это система автоматизированного, а не автоматического проектирования. Это значит, что часть операций проектирования может и всегда будет выполняться человеком. При этом в более совершенных системах доля работ, выполняемых человеком, будет меньше, но содержание этих работ будет более творческим, а роль человека в большинстве случаев — более ответственной.

Под *автоматизацией проектирования* понимают систематическое применение ЭВМ в процессе проектирования при научно обоснованном распределении функций между проектировщиком и ЭВМ и научно обоснованном выборе методов машинного решения задач.

Цель автоматизации:

- 1) повысить качество проектирования,
- 2) снизить материальные затраты на него,
- 3) сократить сроки проектирования,
- 4) ликвидировать рост числа инженерно-технических работников, занятых проектированием и конструированием.

Научно обоснованное распределение функций между человеком и ЭВМ подразумевает, что человек должен решать задачи, носящие творческий характер, а ЭВМ должна решать задачи, решение которых поддается алгоритмизации.

Существенным отличием автоматизированного проектирования от неав совящимирования бласте выстания выст

САПР создается и функционирует в проектной организации как самостоятельная система. Она может быть связана с подсистемами и банками данных других автоматизированных систем. Системы автоматизированного проектирования имеют свои специфические особенности, принципы создания и развития.

Для создания САПР необходимо:

- 1) совершенствовать проектирование на основе применения математических методов и средств вычислительной техники;
 - 2) автоматизировать процессы поиска, обработки и выдачи информации;
- 3) создавать банки данных, содержащих систематизированные сведения справочного характера, необходимые для автоматизированного проектирования объектов;
 - 4) повышать качество оформления проектной документации;
- 5) повышать творческую долю труда проектировщиков за счет автоматизации нетворческих работ;
 - 6) подготавливать и переподготавливать специалистов;
- 7) реализовывать взаимодействие с автоматизированными системами различного уровня и назначения.

Комплекс средств автоматизации проектирования включает методическое, лингвистическое, математическое, программное, техническое, информационное и организационное обеспечение.

Структурными составными составляющими САПР являются *подсистемы*, обладающие всеми свойствами систем и создаваемые как самостоятельные системы. Это выделенные по некоторым признакам части САПР, обеспечивающие выполнение некоторых законченных проектных задач с получением соответствующих проектных решений и проектных документов.

По назначению подсистемы САПР разделяют на два вида: *проектирующие* и *обслуживающие*.

К *проектирующим* относятся подсистемы, выполняющие проектные процедуры и операции, например:

- · подсистема проектирования деталей;
- подсистема проектирования схемы управления.

К *обслуживающим* относятся подсистемы, предназначенные для поддержания работоспособности проектирующих подсистем, например:

- подсистема графического отображения объектов проектирования;
- · подсистема документирования;
- подсистема информационного поиска и др.

Примерами проектирующих подсистем являются подсистемы геометрического трехмерного моделирования механических объектов, изготовления конструкторской документации, схемотехнического анализа, трассировки соединений в печатных платах.

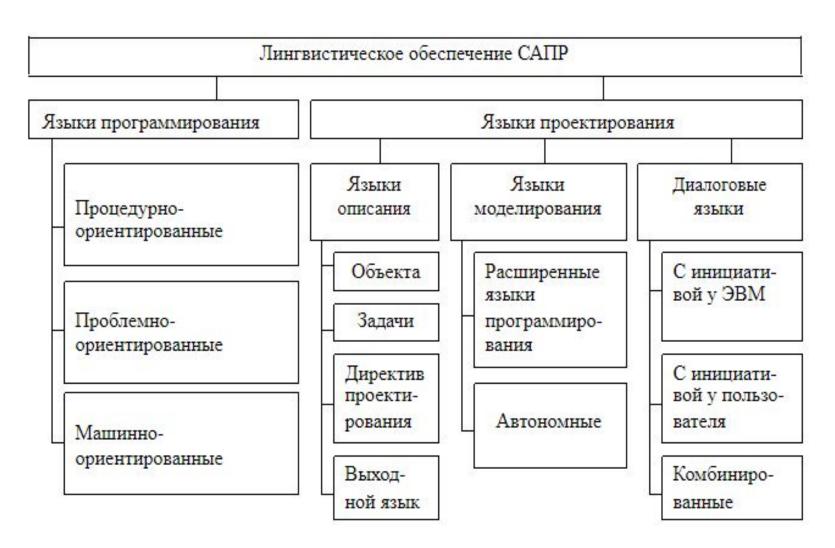
Обслуживающие подсистемы обеспечивают функционирование проектирующих подсистем. Их совокупность часто называют системной средой (или оболочкой) САПР. Типичными обслуживающими подсистемыми являются подсистемы управления проектными данными, подсистемы разработки и сопровождения программного обеспечения *CASE*, обучающие подсистемы для освоения пользователями технологий, реализованных в *CAПР*.

Виды обеспечения САПР

Современная САПР — сложный комплекс математических, программных, технических и др. средств. Принято выделять в составе САПР следующие основные части:

- ✓ *Техническое* включает различные аппаратные средства (ЭВМ, периферийные устройства, сетевое коммутационное оборудование, линии связи, измерительные средства);
- ✓ Математическое объединяет математические методы, модели и алгоритмы для выполнения проектирования;
- ✓ Программное представляется компьютерными программами САПР;
- ✓ Информационное состоит из базы данных, СУБД, а также включает другие данные, которые применяются при проектировании;
- ✓ *Лингвистическое* выражается языками общения между проектировщиками и ЭВМ, языками программирования и языками обмена данными между техническими средствами САПР;
- ✓ Методическое включает различные методики проектирования;

Классификация математического обеспечения САПР



Основные требования к алгоритмам

- высокая алгоритмическая надежность, т.е. гарантированное получение правильного результата при любых численных значениях исходных данных, значениях параметров в заданных диапазонах варьирования и для любых видов функциональных зависимостей в задачах данного класса.
- возможность формализации, что ограничивает применение в САПР таких численных методов, принципиальным моментом которых является искусство и опыт вычислителя.
- малые вычислительные затраты при реализации, причем в соотношении «память-время» в связи с быстрым ростом объема оперативной памяти современных ЭВМ основным становится сейчас требование уменьшения времени счета.
- разумное соотношение «точность-время» с учетом того, что незначительное ухудшение точности моделирования может существенно уменьшить время моделирования.
- алгоритмическая совместимость, т.е. согласованность и достаточность входных и выходных данных разных алгоритмов, совместно работающих в составе одной и той же программы.

Лингвистическое обеспечение САПР

1. Языки программирования

2. Языки проектирования

Языки проектирования можно разделить на 3 группы — *описательные*, *моделирующие и диалоговые*. Их называют также соответственно языками структурного, процедурного и директивного типов.

Язык описания состоит из 3-х частей — описания объекта, описания задачи и описания директив проектирования.

В <u>описание объекта</u> входят описания отдельных элементов, каждое из которых обычно имеет следующую структуру: тип элемента, тип модели элемента, параметры модели элемента, топологические связи элемента.

<u>Язык описания задачи</u> включает следующую информацию:

- описание рассчитываемых выходных параметров (тип параметра, уровни отсчета, условия расчета и т.д.);
- описание условий анализа параметров (тип варьируемых внутренних параметров, тип и диапазон варьирования и т.д.);
- описание условий оптимизации параметров (сведения о варьируемых параметров, выходных оптимизируемых параметрах, ограничениях, критериях оптимизации);
- описание алгоритмов расчета, анализа и оптимизации (типы алгоритмов и параметры, определяющие их скорость, точность и надежность);
- описание задания на вывод результатов проектирования (что выводить и в каком виде таблица, графики, чертежи; параметры выходного документа шаг печати,

<u>Язык описания директив</u> на проектирование состоит из перечисленных режимов, в которых должна последовательно работать САПР.

<u>Языки моделирования</u> (процедурные языки) описывают не только структуру и параметры объекта проектирования, но и алгоритм, процедуру его функционирования, например, процесс передачи и преобразования сигнала от блока к блоку.

Язык моделирования строится на базе какого-либо языка программирования, к которому добавляются несколько новых конструкций, необходимых для моделирования в заданной предметной области.

Такой моделирующий язык называется <u>расширением языка программирования.</u> Если язык моделирования основан на самостоятельных конструкциях, то он называется *автономным*.

<u>Языки диалога</u> предназначены для организации взаимодействия пользователя и САПР в процессе проектирования.

Различают три типа диалоговых языков: с инициативой у пользователя, с инициативой у ЭВМ и комбинированный.

Основными элементами языка диалога являются 4 элемента:

- <u>подсказка</u> ЭВМ пользователю,
- директива пользователя ЭВМ,
- меню, представляющее возможность выбора,

Информационное обеспечение САПР					В информационное обеспече-
Типовые сведения	Способы хранения и обработки типовых сведений				ние САПР входят сведения о типовых элементах РЭА и их
Параметры моделей элементов	Базы данных		данных Системы управления базами данных		параметрах, типовых материалах, типовых фрагментах схем и, вовторых, способы, алгоритмы и программы, предназначенные для
Параметры материалов	Способы организа- ции разме- щения дан- ных	Способы структуриро- вания данных	Язык СУБД	Программы СУБД	 ∪ упорядоченной записи, хранения, перемещения и извлечения этих данных. Со второй частью информационного обеспечения связаны
Параметры и схемы типо- вых фрагмен- тов РЭУ	Последовательная организация	Ассоциа- тивная структура	Язык описания данных	Програм- мы загруз- ки данных	понятия база данных (БД), система управления базой данных (СУБД) и банк данных.
Параметры и структуры ти- повых процес- сов проекти- рования	Прямая органи- зация Библио- течная органи- зация	Последовательная структура Иерархическая структура	Язык обработки данных	Програм- мы поис- ка, выбор- ки и кор- рекции данных	БД – совокупность массивов данных, организованных Таким образом, чтобы обеспечить быстрый и удобный поиск любых данных по запросу или их перемещение и корректировку.
Конечные и промежуточ- ные результа- ты проектиро- вания	Индексно- последо- вательная организа- ция	Реляцион- ная струк- тура	Язык ма- нипуля- ции дан- ными	Програм- мы вос- становле- ния дан- ных	СУБД – совокупность языковых средств и программ, предназначенных для поиска нужных данных, их перемещения

Программное обеспечение САПР

В программное обеспечение входят тексты программ и документы для их эксплуатации (инструкции для пользователя, текстовые программы и т.д.). Сюда относятся системное ПО, специализированные операционные системы, предметные программы САПР.

Основные требования к программному обеспечению:

- Гибкая организация (модульное построение, взаимозаменяемость модулей и т.д.), допускающая возможность построения различных конфигураций программных систем и их расширение;
- Хорошее сервисное обеспечение (возможность диагностики ошибок работы в режиме диалога, с разделением времени);

Техническое обеспечение САПР

В состав ТО САПР входят ЭВМ и периферийное вспомогательное оборудование, обеспечивающее удобство взаимодействия проектировщика и САПР.

К периферийным средствам относят устройства графического ввода, чертежные автоматы, координатографы, дисплеи и автоматизированное рабочее место (APM).

Устройства графического ввода выполняют преобразование графической информации (ГИ) в цифровую форму, состоящее из операций считывания и кодирования.

Чертежные автоматы служат для вычерчивания чертежей по заданной цифровой информации. Эти устройства позволяют перевести результаты проектирования, полученные в виде цифровых кодов, в графическую форму и облегчают изготовление технической документации.

Координатографы используют при разработке фотооригиналов подложек микросхем, печатных плат и т.д. Изображение наносится путем вырезания, гравировки по заданной ЭВМ программе.

Дисплеи – это устройства отображения информации на экране электронно-лучевой трубки.

APM представляют собой комплексы для организации диалога между ЭВМ и проектировщиком с широким использованием графической информации.

Совокупность правил, инструкций и документов, регламентирующих состав групп обслуживания САПР, их обязанности и взаимоотношения, образуют *организационное обеспечение*.

Классификация САПР

Классификацию САПР осуществляют по ряду признаков, например, по области применения, целевому назначению, по характеру базовой подсистемы – ядра САПР.

По *области применения* все САПР подразделяют на:

- Машиностроительные позволяют выполнять разработку элементов механических систем, а также создавать из них сборки, получая сложные механизмы (MCAD (Mechanical CAD).
- · Приборостроительные используются для создания радиоэлектронного оборудования, интегральных микросхем и трассировки печатных плат (ECAD (Electronic CAD) или EDA (Electronic Design Automation).
- Архитектурные применяются в промышленном и гражданском строительстве, позволяют моделировать конструкции зданий и сооружений.

Кроме того, известно большое число специализированных САПР. Например: САПР больших интегральных схем (БИС), САПР летательных аппаратов, САПР электрических машин и т. п.

По <u>иелевому назначению</u> САПР или его подсистемы подразделяют на САD, САЕ-и САМ-системы:

- **CAD-системы** (конструкторские CAПР, Computer-Aided Design) объединяют в себе инструментарий конструирования различных деталей, подготовки чертежей, спецификаций и сопутствующей документации. Большинство современных программ обладают функциями создания 3D-моделей, используемых в CAM и CAE-системах.
- **САМ-системы** (технологические САПР, Computer-aided manufacturing) позволяют выполнять технологическую поддержку производства изделия. Примером может служить генерация управляющей программы для станков и обрабатывающих центров с ЧПУ (числовое программное управление).
- **САЕ-системы** (Computer Aided Engineering) обладают обширными средствами поддержки математического анализа. С помощью них моделируют и прогнозируют технологические процессы в разных областях; выполняют сложные расчеты. САЕ системы позволяют оценить работоспособность проектируемого изделия до его производства.

По характеру базовой подсистемы (ядру САПР) различают:

- 1. САПР на базе подсистемы машинной графики и геометрического моделирования. Эти САПР ориентированы на приложения, где основной процедурой проектирования является конструирование, т. е. определение пространственных форм и взаимного расположения объектов. Сюда относится большинство САПР в области машиностроения, построенных на базе графических ядер. В настоящее время широко используют унифицированные графические ядра, применяемые более чем в одной САПР (ядра Parasolid фирмы EDS Unigraphics и ACIS фирмы Intergraph).
- 2. САПР на базе СУБД. Они ориентированы на приложения, в которых перерабатывается большой объем данных. Такие САПР встречаются в технико-экономических приложениях, например, при проектировании бизнес-планов, а также при проектировании объектов, подобных щитам управления в системах автоматики.
- 3. САПР на базе конкретного прикладного пакета. Это автономно используемые программно-методические комплексы, например, имитационного моделирования производственных процессов, расчета прочности, синтеза и анализа систем автоматического управления и т. п. Часто такие САПР относятся к системам САЕ. Примерами могут служить программы логического проектирования на базе языка VHDL, математические пакеты типа MathCAD.
- 4. Комплексные (интегрированные) САПР, состоящие из совокупности подсистем предыдущих видов. Характерными примерами комплексных САПР являются САЕ/САD/САМ-системы в машиностроении или САПР БИС. Так, САПР БИС включает в

В зависимости от *сложности решаемых задач* существующие САПР можно разделить на 4 типа:

- 1. Уникальные САПР, каждая из которых создается специально для решения какой-либо одной крупной научно-технической проблемы.
 - 2. Отраслевые САПР, решающие типовые задачи отрасли.
- 3. *САПР отдельных предприятий*, ориентированные на решение типовых задач предприятия.
- 4. *Мини-САПР* для решения отдельных задач проектирования, например, электрического расчета схем или трассировки печатных плат.

Первые три типа относятся к многофункциональным САПР коллективного пользования и реализуются по 2-х ступенчатой иерархической схеме — на верхнем уровне находится мощная ЭВМ, на нижнем — периферийные малые ЭВМ и АРМ. 4-й тип реализуется обычно на малых и средних ЭВМ.

Классификация пользователей САПР

Специалистов, работающих с САПР, называют пользователями САПР. Их можно разделить на 3 категории:

Пользователи-разработичии САПР — это наиболее квалифицированная категория пользователей, в совершенстве владеющая программированием, математическими методами, а также хорошо знающая предмет проектирования.

Пользователи-сопроводители САПР — эта категория выполняет профилактические работы по поддержанию САПР в рабочем состоянии, консультирует инженеров по вопросам методики использования САПР для проектирования.

Пользователи-разработички РЭА — это наиболее широкая категория пользователей, использующая САПР для решения конкретных прикладных задач и называемая часто конечными пользователями (РЭА — радиоэлектронная аппаратура).

Режимы взаимодействия пользователя и САПР

Различают следующие режимы взаимодействия пользователя и САПР: пакетной обработки, прямого доступа и с использованием автоматизированного рабочего места (APM).

Режим пакетной обработки задач пользователя — это режим, когда из отдельных задач (колод перфокарт) оператор ЭВМ комплектует в виде общей колоды пакет задач, вводимых в ЭВМ и решаемых затем поочередно без вмешательства пользователя.

Режим прямого доступа (пультовый, терминальный) — это режим, когда пользователь непосредственно работает на ЭВМ, без посредничества оператора. Способ ввода информации зависит от ее количества.

Помимо дисплея пользователь САПР нуждается в широком наборе технических и программных средств для оперативного и долговременного документирования и корректировки текстовой и графической информации, а также для простейших расчетов, не требующих больших ЭВМ. Совокупность этих средств называется АРМ (автоматизированным рабочим местом).

Популярные программы САПР

На текущий момент существует большое разнообразие CAD-систем разного уровня сложности, что вполне соответствует классификации по комплексности автоматизации проектирования.

К примерам комплексов верхнего уровня можно отнести:

- NX (разработчик Siemens PLM Software) программный продукт с большими возможностями в сфере промышленного дизайна, конструирования, проектирования оснастки (штампов, литейных форм), программирования станков с ЧПУ, инженерного анализа. NX построен на геометрическом ядре Parasolid. NX нашла свое применение в области энергомашиностроения, транспортного машиностроения, при производстве газотурбинных двигателей, а авиационной и автомобильной промышленности.
- САТІА (разработчик Dassault Systemes). Нишей данного программного комплекса выступают такие отрасли как авиастроение и кораблестроение, тяжелое машиностроение. Эта САПР построена на ядре CGM (Convergence Geometric Modeler), которое жестко связано с самой системой. Особенностью САТІА является возможность совместной работы в режиме реального времени. Данный программный комплекс включает в себя порядка трех сотен подключаемых модулей.

К среднему уровню можно отнести:

- Меchanical Desktop (разработчик Autodesk) предназначен для подготовки проектных решений как отдельных деталей, так сборок, а также сопроводительной технической документации. Имеет возможности трехмерного твердотельного моделирования, позволяет спроектировать объекты произвольной геометрической формы и степени сложности. Имеет обширную базу стандартных изделий, в том числе ЕСКД (единая система конструкторской документации).
- Маstercam (разработчик CNC Software, Inc.) представляет собой универсальный, используемый в различных областях программный продукт, предлагающий возможность многовариантных решений в разных режимах работы. Имеет удобный, понятный интерфейс и широкие возможности настройки параметров. Поддерживает трехмерное моделирование, позволяет создавать программы для обработки деталей по 2 5 осям на фрезерных, токарных станках, поддерживает операции штамповки и резки листового материала.
- Самой популярной САПР в мире стала программа AutoCAD. Существуя на рынке уже более тридцати лет, она занимает лидирующее положение среди аналогичных программных решений среднего уровня. Имея в своем арсенале развитый инструментарий разработки и адаптации, она представляет собой универсальную платформу, на базе которой создано большое количество специализированных приложений, решающих задачи проектирования в области механики, электроники,

Пакеты нижнего уровня:

- Bricscad (разработчик Bricsys) программный продукт, предназначенный для создания двумерных чертежей и трехмерного моделирования. Широко используется в машиностроении, строительстве, электрике и автоматике. Основная особенность единый формат для 2D и 3D объектов.
- КОМПАС (разработчик АСКОН) представляет собой программу для моделирования. Дает возможность вести конструкторскую документацию, поддерживает отечественные стандарты ЕСКД. Однако не является кроссплатформенной системой, так как формат чертежей не поддерживается другими пакетами.

Различия ГИС и САПР

1. Различия по моделям данных.

В САПР, в отличие от ГИС, используется большое число различных графических примитивов, так как одной из главных задач САПР является получение качественных чертежей. Сложность структуры чертежей САПР не позволяет хранить чертежи в базах данных (а если они и хранятся, то целиком, в виде единого большого поля), и поэтому они хранятся в виде отдельных файлов.

2. Различия по атрибутной поддержке.

Одним из принципиальных различий между ГИС и САПР является то, что графический примитив в ГИС является самостоятельным объектом, имеющим свои атрибуты, а в САПР – только изобразительным средством, т.е. частью объекта, и поэтому своих атрибутов, как правило, не имеет.

3. Различия по методам визуализации.

В САПР, как правило, графические объекты сразу создаются такими, как они выглядят на экране и печати. В ГИС же понятия модели объекта и его внешнего вида специально разнесены.

В связи с тем, что ГИС и САПР в чистом виде имеют свои сильные и слабые стороны, в последнее время всё большее распространение получают интегрированные графические системы, обладающие возможностями как ГИС, так и САПР. Например, в дорожной отрасли такие комбинированные возможности

В мире существует ряд фирм, которые разрабатывают только ГИС-продукты. Например, MapInfo (Канада).

Другие производители, такие, как AutoDesk (США) и Bentley Systems (США), разрабатывают на едином графическом ядре (AutoCAD в Autodesk и Microstation в Bentley) как САПР, так и ГИС.

Среди отечественных ГИС наиболее известными являются GeoGraph (ЦГИ ИГ РАН, Москва), КАРТА-2000 (КБ Панорама, Москва), GeoCAD (Геокад, Новосибирск).

Для дорожной отрасли комплексное решение САПР (IndorCAD) + ГИС (IndorGIS) разрабатывается фирмой "ИндорСофт. Инженерные сети и дороги" (Томск).

Домашнее задание. Написать краткий конспект:

- 1. Развитие САПР.
- 2. Возможности и области применения САПР.
- 3. Обзор и примеры интегрированных CAD / CAE / CAM-систем (например, CAD/CAM ADEM и др., https://www.natural-sciences.ru/ru/article/view?id=27253)