Насосы. Классификация. Характеристика

Насосы. Назначение

Гидравлические насосы предназначены для преобразования механический энергии (крутящий момент, частоту вращения) в гидравлическую (подача, давление).

Насос это гидравлическая машина, используемая для откачки, транспортировки, подачи и обеспечения циркуляции в замкнутом пространстве различных жидких сред, в том числе жидкостей с некоторым содержанием паров, газов и твердых частиц

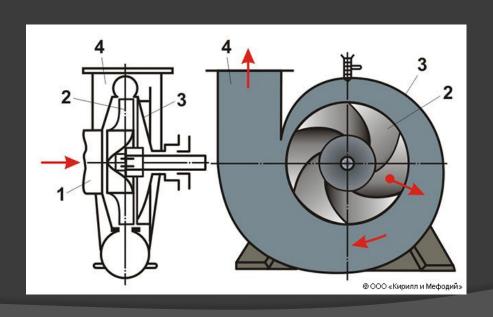
А также для передачи через жидкость механической энергии в качестве привода к каким-либо механизмам

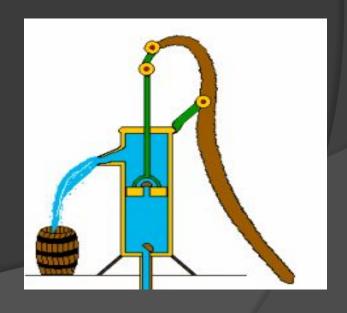
Классификация насосов

ГОСТ 17398-72 подразделяет насосы на два основных

класса: динамические и объемные

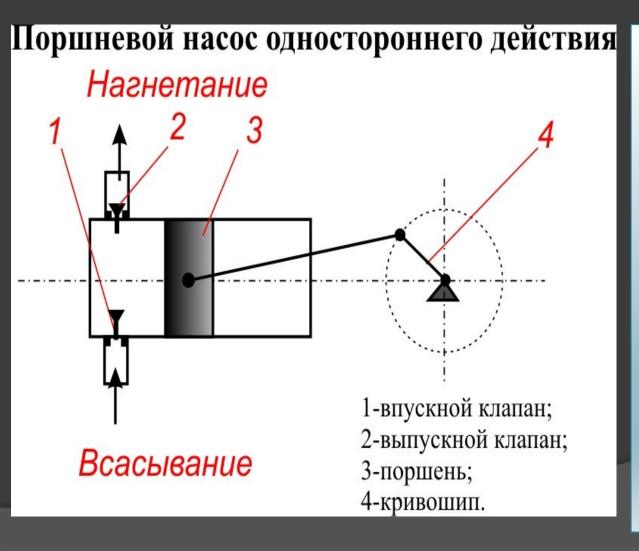
Общая схема классификации насосов			
динамические	лопастные	центробежные	
		диагональные	
		осевые	
		вихревые	
	трения	струйные	
		эрлифты	
объемные	возвратно-поступальные	поршневые	
		плунжерные	
		диафрагменные и шланговые	
		пневматические	
	роторные	шестеренные	
		винтовые	
		шиберные	

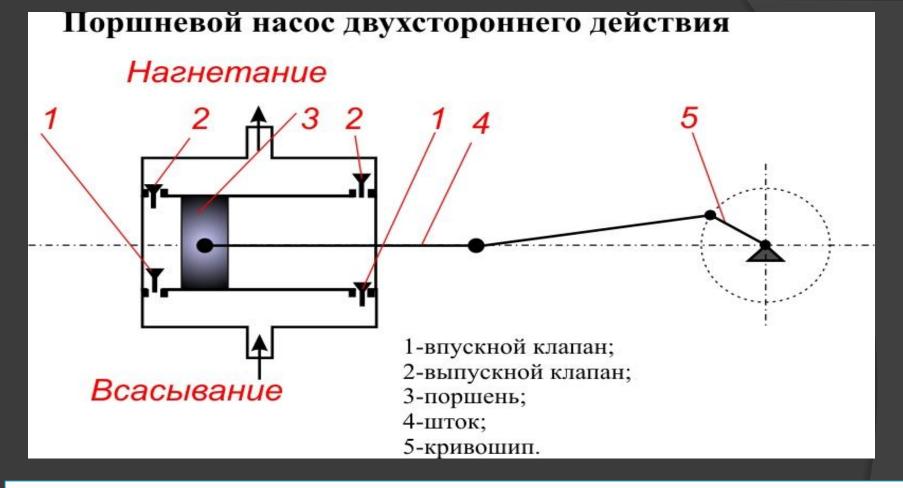

В динамических насосах


передача энергии потоку происходит под влиянием сил, действующих на жидкость в рабочих полостях, постоянно соединенных с входом и выходом насоса. Характерный представитель этого класса центробежный насос

В объемных насосах

энергия передается жидкой среде в рабочих камерах, периодически изменяющих объем и попеременно сообщающихся с входом и выходом насоса. Для этого класса типичным является


поршневой насос

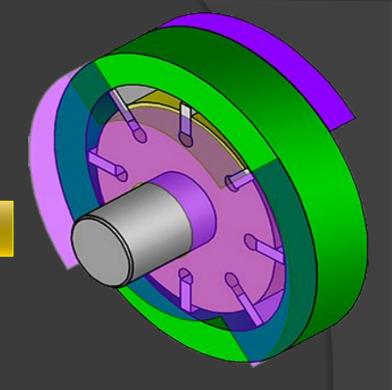

Поршневой насос

Поршневые гидрообъемные насосы и двигатели могут быть выполнены одностороннего, либо двухстороннего действия

При вращении кривошипа 4 поршень 3

совершает возвратнопоступательное движение. За один оборот кривошипа поршень совершает один всасывающий и один нагнетательный ход. Всасывание жидкости происходит через клапан 1, а вытеснение жидкости через клапан 2

Гидронасос данного типа имеет две рабочие камеры, расположенные по обе стороны поршня: штоковую – со стороны штока и бесштоковую – с противоположной стороны. Поэтому за один оборот кривошипа (двойной ход поршня) гидронасос совершает два всасывающих и два нагнетательных хода

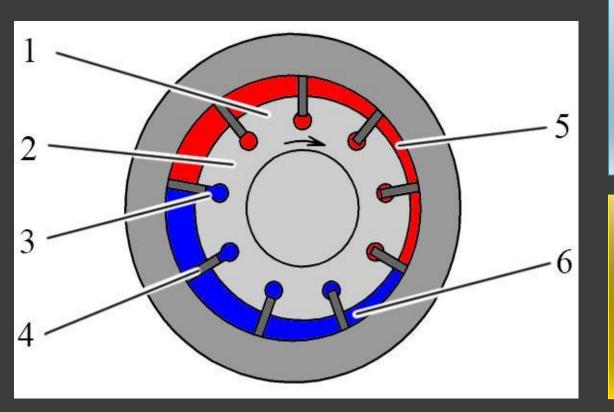

Пластинчатые насосы

Относятся к классу объёмных роторных шиберных машин

Типы пластинчатых насосов

По количеству циклов изменения рабочей камеры:

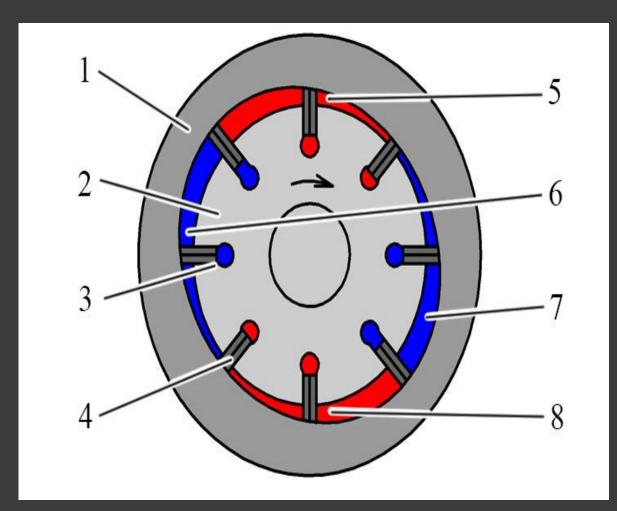
- •однократного действия
- •двукратного действия



По возможности регулирования:

- •регулируемые
- •нерегулируемые насосы

Принцип работы пластинчатого насоса однократного действия

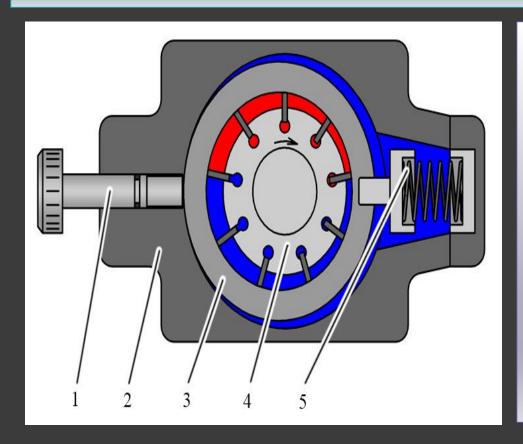


Ротор 1 установлен в статоре 2 с эксцентриситетом. В роторе 1 в радиальном направлении выполнены пазы 3, в которых установлены подвижные пластины 4.

При вращении ротора пластины под действием центробежной силы прижимаются к цилиндрической поверхности статора.

За счет эксцентриситета между осями вращения ротора и статора обеспечивается изменение объемов рабочих камер. В зоне 6 увеличения объема камеры происходит всасывание рабочей жидкости, зоне 5 уменьшения - нагнетание

Устройство пластинчатого насоса двукратного действия



Внутренняя поверхность статора 1 имеет овальную форму. Ротор 2 установлен соосно статору. В пазах 3 ротора установлены пластины 4, которые могут свободно перемещаться внутри пазов

При вращении ротора пластины за счет центробежной силы пластины прижимаются к поверхности статора образуя рабочие камеры

Регулируемые пластинчатые насосы

В конструкции регулируемых насосов предусмотрена возможность изменения рабочего объема. Подачу насосов этот типа можно регулировать объемным способом

Статор 3 установлен в корпусе 2 с зазором. Винт 1 позволяет перемещать статор внутри корпуса, тем самым меняя эксцентриситет между ротором 4 и статором. Если эксцентриситет будет равен 0, то объем рабочих камер при вращении ротора меняться не будет, подача насоса будет равна 0.

При максимальном эксцентриситете подача будет максимальной. Пружина 5 прижимает статор к регулировочному винту

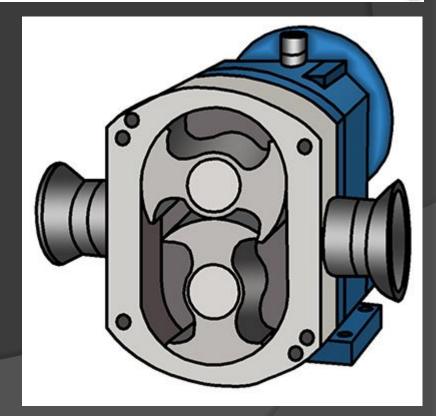
Роторный насос (или ротационный): вращательный и поступательный

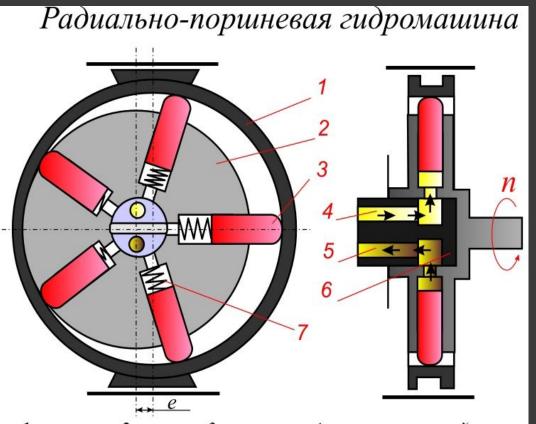
Части ротора наряду с внутренними стенками рабочей камеры формируют замкнутое пространство, в которое и попадает жидкость это устройство, которое используется в тех случаях, когда необходимо обеспечить перекачивание различных жидких сред в больших объемах

Перекачиваемая жидкость сначала поступает во внутреннюю камеру устройства, из которой она выталкивается вращательными и поступательными движениями, совершаемыми рабочим органом – ротором

При уменьшении объема такого пространства, что происходит при движении ротора, жидкость по законам физики выталкивается

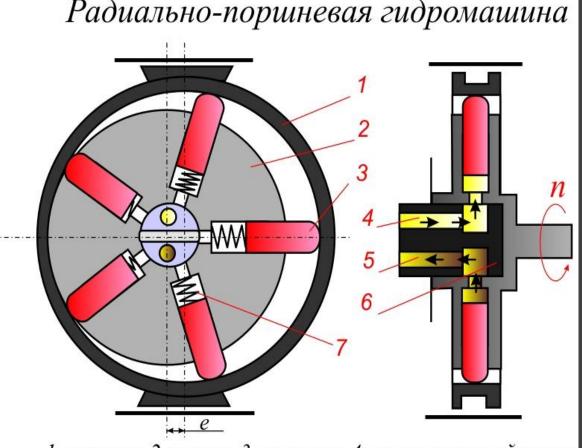
Кулачковый ротационный насос


Особая конструкция оборудования предполагает использование максимально точных по размеру деталей. Это делает их более дорогими устройствами, чем все остальные разновидности насосов. Высокая цена полностью компенсируется их надежностью и долговечностью


К основным достоинствам насосов относятся:

- исключение даже малейшей вибраций;
- абсолютная бесшумность в работе;
- способность транспортировать среды без изменения их качества;
- возможность использования в любом положении.

Роторные радиальнопоршневые гидронасосы

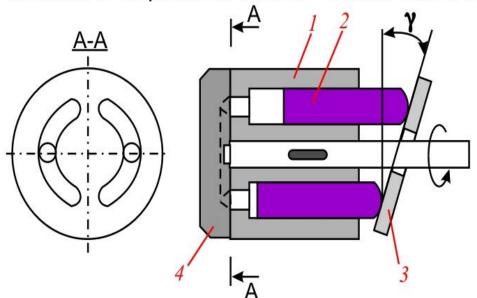

Используются в качестве гидронасосов с постоянной и переменной подачей, а также в качестве гидродвигателей вращательного движения с постоянным и переменным крутящими моментами

1-статор; 2-ротор; 3-поршень; 4-всасасывающий канал; 5-нагнетательный канал; 6-распределительная цапфа; 7-пружина.

Схема состоит из статора 1, в котором эксцентрично установлен ротор 2. В радиальных расточках ротора установлены поршни 3, опирающиеся своими сферическими головками на статорное кольцо. Число поршней с целью улучшения равномерности подачи обычно выбирают нечетным в количестве 5 - 7 реже 9 в одном ряду.

Так как центры окружностей ротора и статора смещены относительно друг друга, то при вращении ротора поршни скользя СВОИМИ сферическими головками по статорному кольцу, получают возвратнопоступательное движение, совершая за каждый оборот ротора один всасывающий ход и один нагнетательный

1-статор; 2-ротор; 3-поршень; 4-всасасывающий канал; 5-нагнетательный канал; 6-распределительная цапфа; 7-пружина.


Всасывание и нагнетание жидкости производится через каналы 4 и 5, расположенные в распределительной цапфе 6

Аксиальные роторнопоршневые гидронасосы

Роторно-поступательный насос, в котором вытеснители имеют форму поршней (плунжеров), а рабочие камеры ограничиваются вытеснителями в цилиндрических полостях ротора

Роторно-поршневой насос, у которого ось вращения ротора параллельна осям рабочих камер и вытеснителей или составляет с ними угол менее 45 градусов называется аксиальным

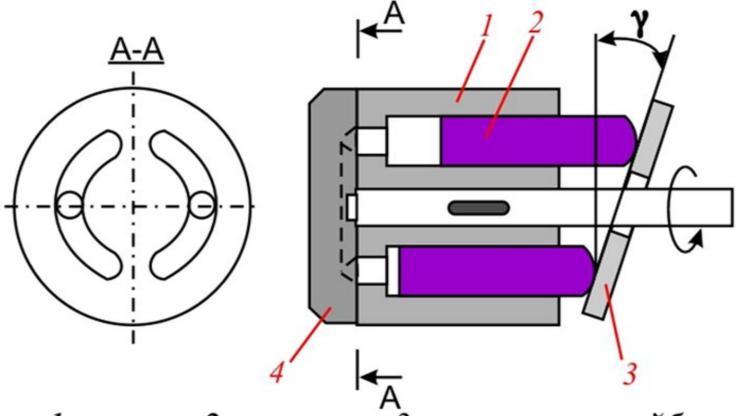
Аксиально-поршневой насос с наклонной шайбой

1-ротор; 2-поршень; 3-наклонная шайба;

4-распределительный золотник.

Аксиальные роторнопоршневые гидронасосы бывают двух разновидностей:

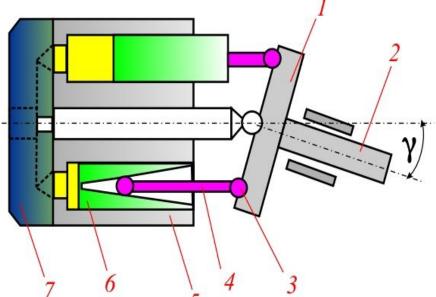
- 1. С наклонной шайбой
- 2. С наклонным блоком


В гидронасосах с наклонной шайбой головки поршней 2 опускаются на неподвижную наклонную шайбу 3. Число поршней обычно выбирается 5 – 9

Аксиально-поршневой насос с наклонной шайбой 1-ротор; 2-поршень; 3-наклонная шайба; 4-распределительный золотник.

При вращении ротора (в случае работы в режиме насоса) поршни, скользя своими головками по наклонной шайбе 3, совершают возвратнопоступательное движение. При движении поршня в сторону шайбы совершается всасывающий ход, при обратном движении – нагнетательный

Всасывание и нагнетание жидкости производится через неподвижный распределительный золотник 4, в котором сделаны два серповидных углубления, одно из которых соединено с всасывающим трубопроводом, а другое с нагнетательным


Аксиально-поршневой насос с наклонной шайбой

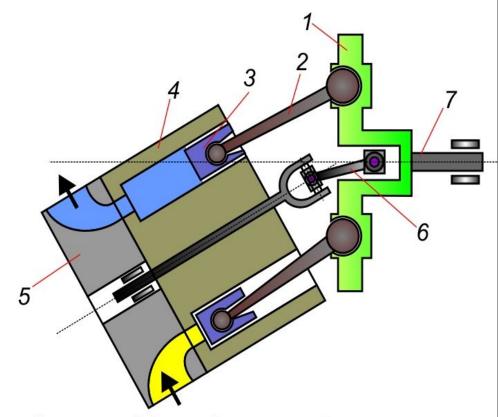
1-ротор; 2-поршень; 3-наклонная шайба; 4-распределительный золотник.

При вращении ротора рабочие камеры попеременно сообщаются то с линией всасывания, то с линией нагнетания, либо замыкаются между собой в моменты, когда выходные каналы из рабочих камер оказываются в перемычках между серповидными углублениями

Аксиально-поршневой насос с наклонным блоком

1-упорный диск; 2-входной вал; 3-сферическая головка шатуна; 4-шатун; 5-блок цилиндров (ротор); 6-поршень; 7-неподвижный распределитель.

В этом насосе поршни шарнирно связаны с наклонным блоком, что исключает возможность отрыва поршней от диска


В аксиальных роторнопоршневых гидронасосах с наклонным блоком поршни соединяются с приводным наклонным диском с помощью шатунов

Поэтому при вращении наклонной шайбы, вместе с ней вращается и ротор, а поршни при этом совершают возвратно-поступательное движение

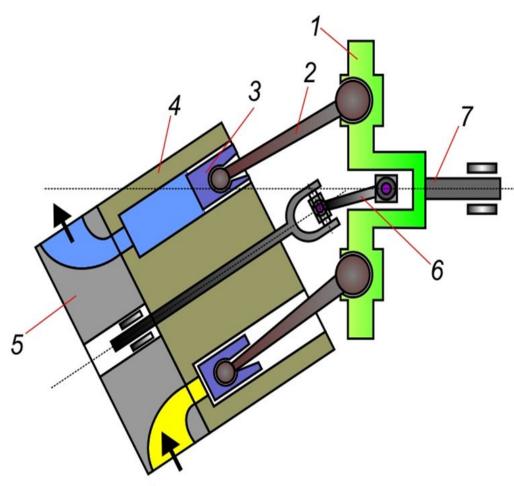
Передача крутящего момента на ротор осуществляется шатунами 4, входящими внутрь поршней 6

Среди аксиальных роторно-поршневых насосов с наклонным блоком большое распространение получили насосы с двойным несиловым карданом

Аксиально-поршневой насос с наклонным блоком карданного типа

1-упорный диск; 2-шатун; 3-поршень; 4-блок цилиндров (ротор); 5-неподвижный распределитель; 6-двойной кардан; 7-входной вал.

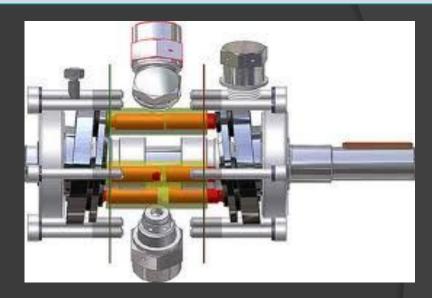
У данного насоса упорный диск 1, жестко связан с валом 6, шарнирно связан со сферическими головками шатунов 2


Другие сферические головки этих шатунов шарнирно заделаны в поршнях 3, которые совершают возвратно-поступательное движение в блоке цилиндров (роторе) 4.

Последний приводится во вращение от вала 6 через двойной кардан 7

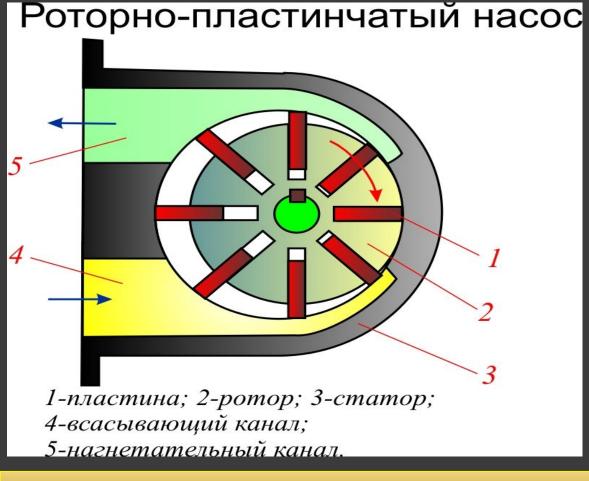
Подводящий и отводящий трубопроводы присоединяются к неподвижному распределителю 5.

При изменении наклона распределителя относительно вала 6 изменяется ход каждого поршня, а следовательно и рабочий объем насоса


Аксиально-поршневой насос с наклонным блоком карданного типа

1-упорный диск; 2-шатун; 3-поршень; 4-блок цилиндров (ротор); 5-неподвижный распределитель; 6-двойной кардан; 7-входной вал.

Изменение рабочего объема, а следовательно и производительности в регулируемых аксиально-поршневых насосах осуществляется изменением угла наклона блока цилиндров или диска, которое может выполняться вручную или автоматически в зависимости от давления насоса

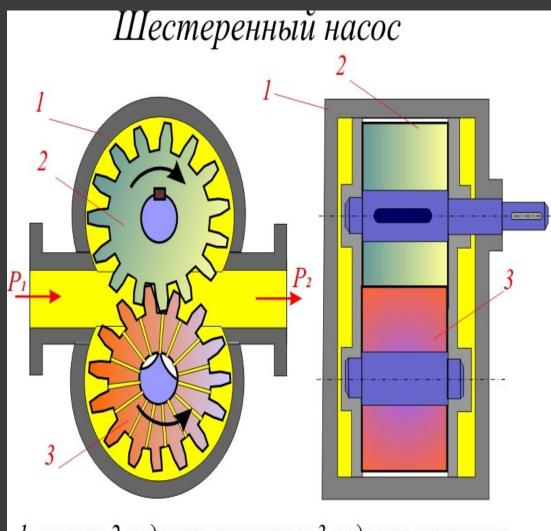


Роторно-пластинчатые гидронасосы

Основными частями машины однократного действия является статор 3, внутри которого с эксцентриситетом установлен ротор 2, представляющий собой цилиндр с прорезями (пазами), расположенными либо радиально, либо с небольшим наклоном вперед по отношению к направлению вращения

В прорезях помещаются пластины 3, которые при вращении ротора под воздействием центробежных сил могут совершать относительно ротора возвратно-поступательное движение и прижиматься к внутренним стенкам статора. Число пластин для улучшения равномерности подачи нагнетаемой жидкости в случае работы в режиме насоса рекомендуется брать кратным 4

Роторно-пластинчатый насос 1-пластина; 2-ротор; 3-статор; 4-всасывающий канал;

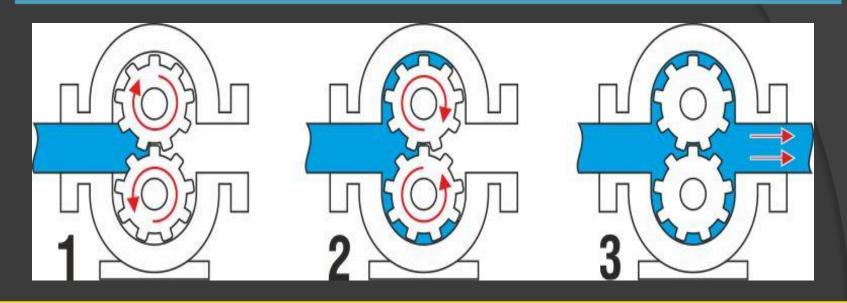

<u>5-нагнетательный канал.</u>

Рабочие камеры в гидромашинах рассматриваемого типа ограничены с двух сторон соседними пластинами и поверхностями ротора и статора. С торцов уплотнение осуществляется дисками

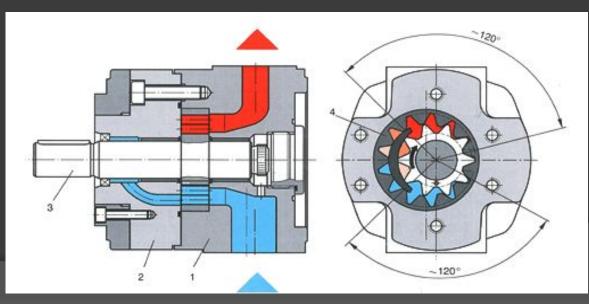
В статоре вырезаны окна 4 и 5, соединенные с подводящим и отводящим трубопроводами

Для разобщения подводящей полости от отводящей в статоре предусмотрена перемычка, ширина которой по дуге окружности статора несколько больше соответствующего расстояния между пластинами

Шестеренные гидронасосы



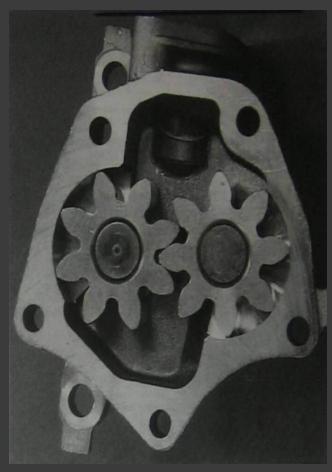
1-корпус; 2-ведущая шестерня; 3-ведомая шестерня.

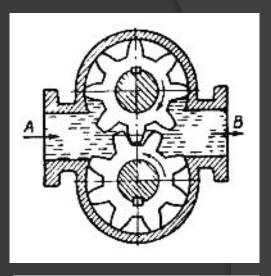

Состоит из двух цилиндрических одинаковых шестерен, помещенных в плотно охватывающий их корпус. Одна из шестерен (2) является ведущей, другая (3) – ведомой.

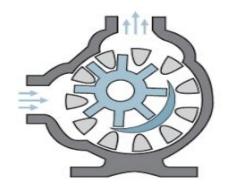
При вращении шестерен жидкость забирается впадинами между зубьями на всасывающей стороне насоса и выжимается из впадин уже на противоположной, нагнетательной стороне

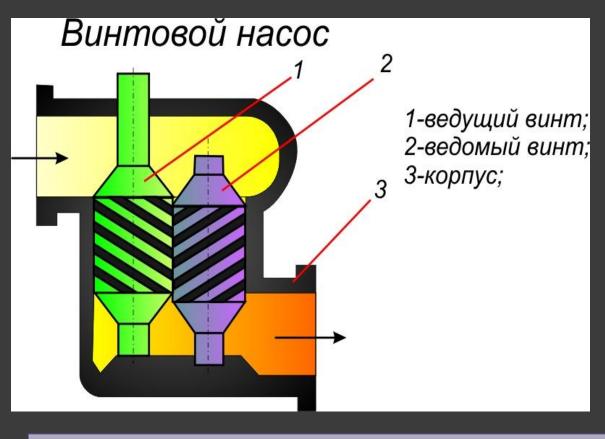
Шестеренные гидронасосы внешнего зацепления

Шестеренные гидронасосы внутреннего зацепления



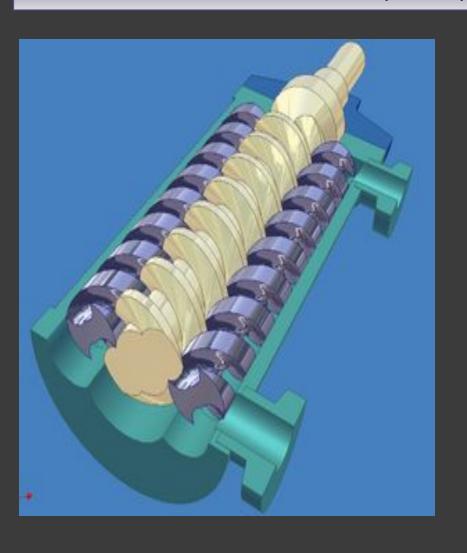



Шестерни чаще всего применяются с прямыми зубьями эвольвентного профиля и малым числом зубцов 8 – 16, но могут применяться также косозубые и шевронные шестерни

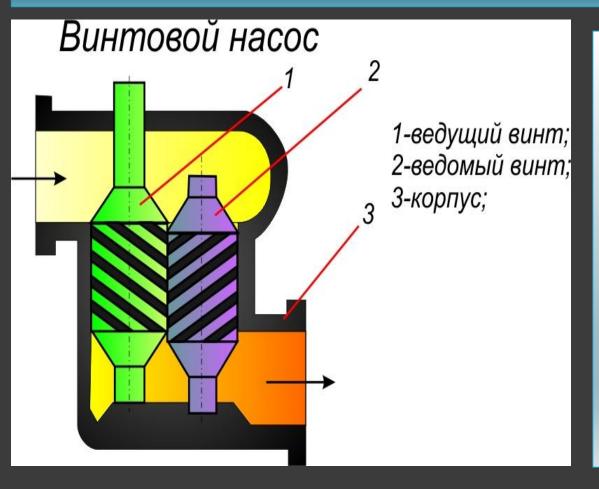


Выгодным является использование шестерен с малым числом зубьев, так как при этом уменьшаются габариты и вес насоса

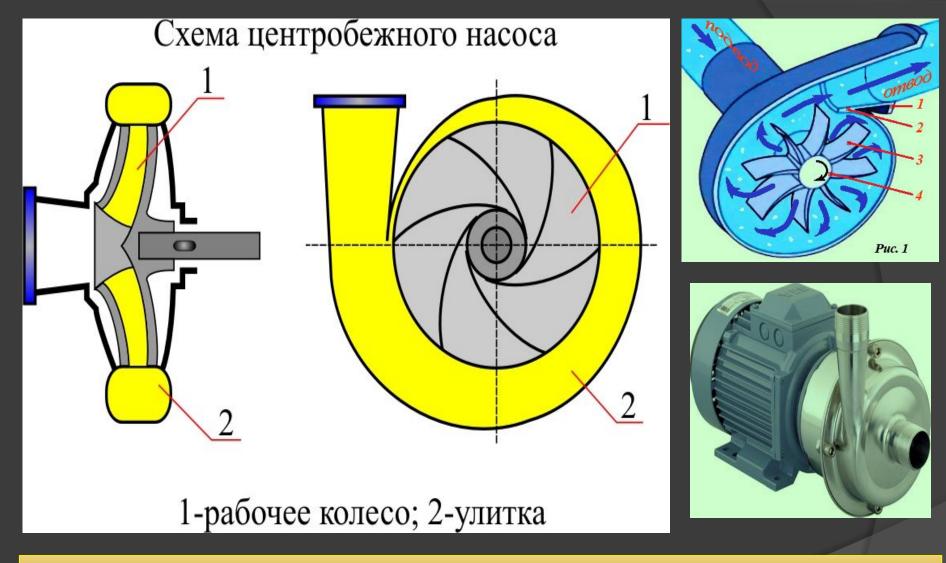
Винтовые насосы


Винтовую гидромашину можно рассматривать как шестеренную с косозубыми шестернями, число зубьев которой уменьшено до числа заходов винтовой нарезки

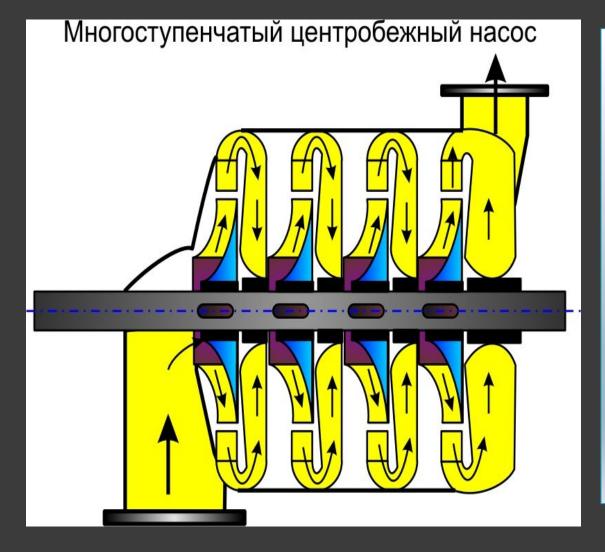
Гидромашины этого типа компактны, имеют высокий к.п. д., высокооборотны, могут работать как в режиме гидронасоса, так и в режиме гидромотора


При работе в режиме насоса они выделяются равномерной подачей, бесшумностью в работе и могут развивать высокий напор. Гидромоторы данного типа имеют на выходном валу равномерный крутящий момент

Насосы в зависимости от числа винтов бывают одно -, двух -, трех- и многовинтовыми. Наибольшее распространение имеют трёхвинтовые насосы с циклоидным зацеплением



Насос состоит из двух винтов с нарезками разного направления, один из которых является ведущим, а другой – ведомым



При вращении винтов винтовые зубья в полости всасывания раскрывают впадины, которые заполняются жидкостью, поступающей из всасывающего патрубка

По мере дальнейшего вращения винтов поступившая в винтовые канавки жидкость отделяется от всасывающей полости и переносится вдоль оси винта в нагнетательную полость

При этом происходит повышение энергии жидкости, поступившей на колесо, а во всасывающей трубе создается разрежение. Пройдя рабочее колесо, жидкость поступает далее в отводной канал или улитку 2, где ее кинетическая энергия преобразуется в статический напор

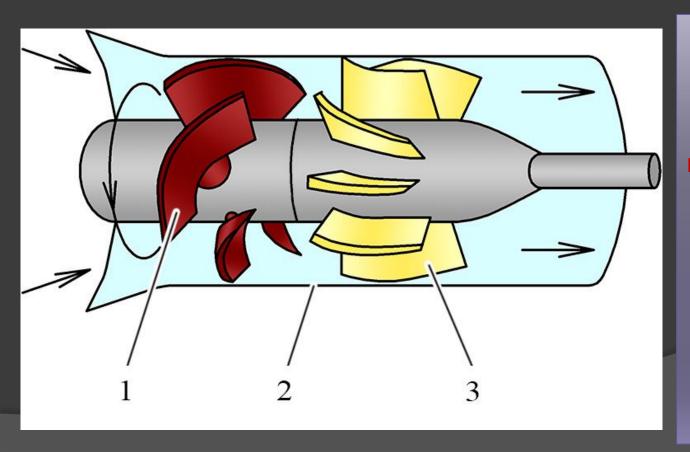
В насосах как одноступенчатого, так и многоступенчатого типа обеспечивается непрерывность процесса всасывания и выталкивания перекачиваемой жидкости при вращении рабочего колеса

В отличие от поршневых устройств, оно не создает пульсаций напора жидкости в обслуживаемой им трубопроводной системе

Многоступенчатые насосы способны формировать поток жидкости с более высокими показателями напора

Фактически напор жидкости, который создают электронасосы многоступенчатого типа, складывается из суммы напоров, создаваемых каждой его ступенью. Такое качество многоступенчатых гидромашин позволяет добиваться более высокого давления жидкости в обслуживаемых ими трубопроводных системах и перемещать ее по ним на более дальние расстояния и более значительные высоты.

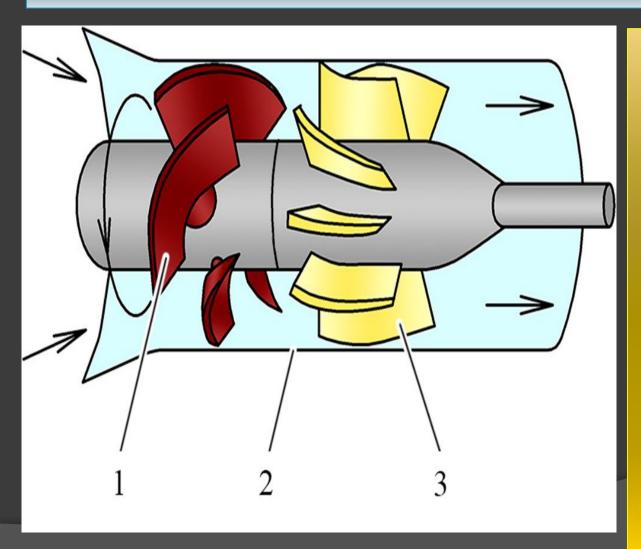
Горизонтальный многоступенчатый центробежный насос с двойным подшипником



Центробежные полупогружные насосы вертикального типа

Осевой насос

Осевым называют насос, в котором жидкая среда перемещается путем обтекания лопастей в направлении оси рабочего колеса


Динамические лопастные машины, в которых кинетическая энергии вращения, при этом, преобразовывается в гидродинамическую энергию потока

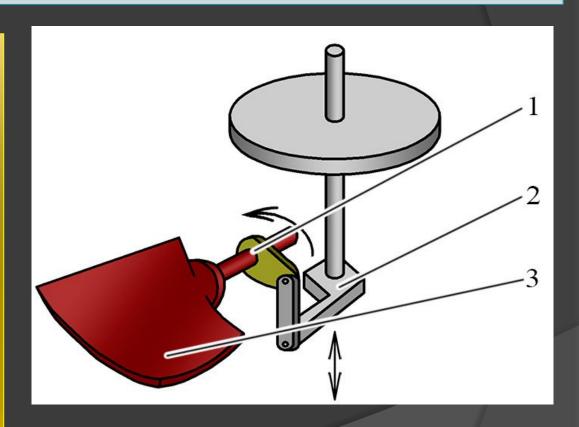
Рабочее колесо с лопатками 1 установлено в цилиндрическом корпусе 2, который предварительно должен быть заполнен жидкостью. Направляющий аппарат 3 расположен за рабочим колесом

Работа осевого насоса

В результате динамического воздействия лопасти на жидкость давление над лопастью повышается, а под ней уменьшается

Благодаря возникающей подъемной силе, частицы жидкости двигаются вдоль оси рабочего колеса, одновременно с этим поток закручивается. Для прекращения вращения жидкости за рабочим колесом установлен направляющий

аппарат 3, на выходе


которого расположен

напорный патрубок

Осевые насосы с поворотными лопастями

Для регулирования подачи, и обеспечения высокого КПД в широком диапазоне изменения скоростей вращения рабочего колеса, используют осевые насосы с поворотными лопастями

Лопасть 3 установлена в подшипниках, тяга 1 лопасти - шарнирно соединена с крестовиной 2. При движении крестовины вверх или вниз угол установки лопасти будет изменяться. Для перемещения крестовины используют гидроцилиндр, механическую передачу с электрическим приводом.

Применение осевых насосов

Осевые насосы используют в системах циркуляционного водоснабжения ТЭС и АЭС, орошения, в промышленности для транспортировки жидкости при низком напоре

Недостатки осевых насосов

- •Отсутствие самовсасывания
- •Низкий напор
- •Зависимость подачи от давления

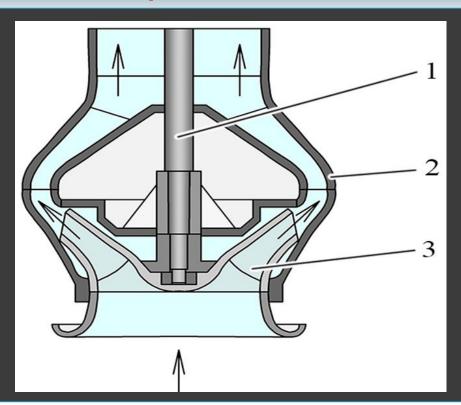
Достоинства осевых насосов

- Высокая подача
- Возможность регулирования характеристик с помощью механизма поворота лопастей
- Высокая надежность
- Простота обслуживания
- Высокий КПД

Диагональные (лопастные) насосы

Частицы жидкости, в насосах этого типа, перемещаются по диагонали условного прямоугольника, образованного осевым и радиальным направлениями

Динамический насос, в котором жидкость перемещается путем обтекания лопастей, за счет совместного действия подъемной и центробежной сил называют **диагональным**

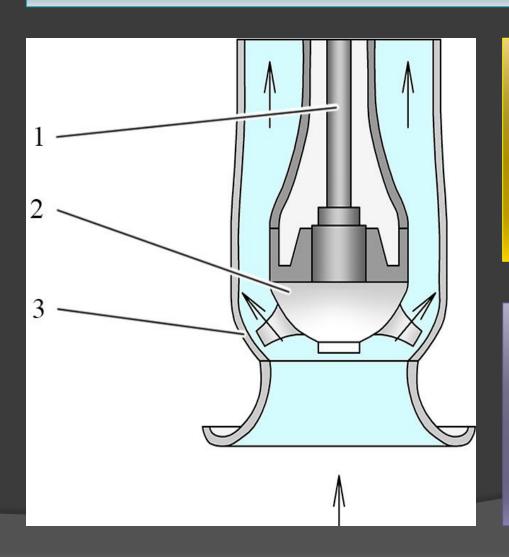


Лопатки расположенные на рабочем колесе воздействуют на жидкость в полости насоса

Различают рабочие колеса **открытого** и **закрытого** *типов*

Диагональный насос с колесом закрытого типа

По конструкции колеса закрытого типа ближе к конструкции рабочих колес **центробежных насосов**

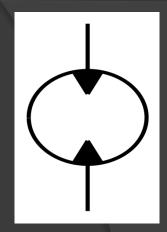


При вращении вала 1 с закрепленным на нем рабочим колесом 3, рос положенным в корпусе 2, в результате воздействия лопаток жидкость движется к периферии рабочего колеса, одновременно с этим, жидкость движется и в осевом направлении

Выпрямляющий аппарат и рабочая камеры спрофилированы так, чтобы остановить вращение жидкости и направить поток в напорный отвод

Диагональный насос с колесом открытого типа

По конструкции колеса открытого типа ближе к конструкции рабочих колес осевых насосов



В результате динамического воздействия установленных на колесе 2 лопаток, поток, под действием центробежной и подъемной сил, движется в диагональном направлении.

Выпрямляющий аппарат установленный позади рабочего колеса, останавливает кручение потока и направляет жидкость вдоль оси насоса

Гидромотор (гидравлический мотор) — гидравлический двигатель, предназначенный для сообщения выхол

предназначенный для сообщения выходному звену вращательного движения на неограниченный угол поворота

Конструкции гидромоторов аналогичны конструкциям соответствующих насосов.

Некоторые конструктивные отличия связаны с обратным потоком мощности через гидромашину, работающую в режиме гидромотора

В отличие от насосов, в гидромоторе на вход подаётся рабочая жидкость под давлением, а на выходе снимается с вала крутящий момент

1. Гидромоторы применяются в технике значительно реже электромоторов, однако в ряде случаев они имеют существенные преимущества перед последними

2. Гидромоторы меньше в среднем в 3 раза по размерам и в 15 раз по массе, чем электромоторы соответствующей мощности

3. Диапазон регулирования частоты вращения гидромотора существенно шире: например, он может составлять от 2500 об/мин до 30-40 об/мин, а в некоторых случаях, у гидромоторов специального исполнения, доходит до 1-4 об/мин

4. Время запуска и разгона гидромотора составляет доли секунды, что для электромоторов большой мощности (несколько киловатт) недостижимо

5. Для гидромотора не представляют опасности частые включения-выключения, остановки и реверс

6. Закон движения вала гидромотора может легко изменяться путём использования средств регулирования гидропривода

Недостатки гидромоторов такие как и у гидроприводов

- 1. Утечки рабочей жидкости через уплотнения и зазоры, особенно при высоких значениях давления в гидросистеме
- 2. Нагрев рабочей жидкости при работе, что приводит к уменьшению вязкости рабочей жидкости
- 3. Чистота рабочей жидкости, поскольку наличие большого количества абразивных частиц в рабочей жидкости приводит к быстрому износу деталей гидрооборудования
- 4. Защита гидросистемы от проникновения в неё воздуха, наличие которого приводит к нестабильной работе гидропривода

Обозначение гидравлических насосов по функциональным признакам

Термин	Определение	Условное обозна- чение или схема
Насос постоян- ной подачи	Объемная гидромашина с нерегулируемым рабочим объемом: • с постоянным направлением потока	•
	• с реверсивным потоком	
Насос с регули- руемой подачей	Объемная гидромашина с регулируе- мым рабочим объемом • с постоянным направлением потока	Ø
	• с реверсивным потоком	②
Гидромотор не- регулируемый	Гидродвигатель с нерегулируемым рабочим объемом	\$
Гидромотор ре- гулируемый	Гидродвигатель с регулируемым ра- бочим объемом	Ø