

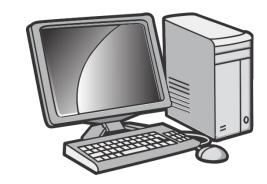
Консультация Зачет с оценкой

- Дисциплина : «Основы локационных и навигационных систем»
- Специальность: <u>11.03.03 «Конструирование и</u> технология электронных средств»
- Курс: **4**, Семестр: **7**
- Группы: М40-401Б-17 ; М40-402Б-17; М40-403Б-17
 - Преподаватель: <u>доцент кафедры №410, к.т.н.</u> <u>Кирдяшкин Владимир Владимирович</u>

Часть 1

Порядок проведения зачета

- . Требования к оборудованию
- II. Этапы зачета и временные рамки
- I. Структура билета
- V. Работа с ЛМС


Требования к оборудованию

Для дистанционной сдачи зачета с оценкой, студент должен обладать:

- а. ПК или смартфон
- b. Доступ к сети Интернет
- с. Микрофоном
- d. Динамики или наушники
- e. Web камера с достаточным разрешением

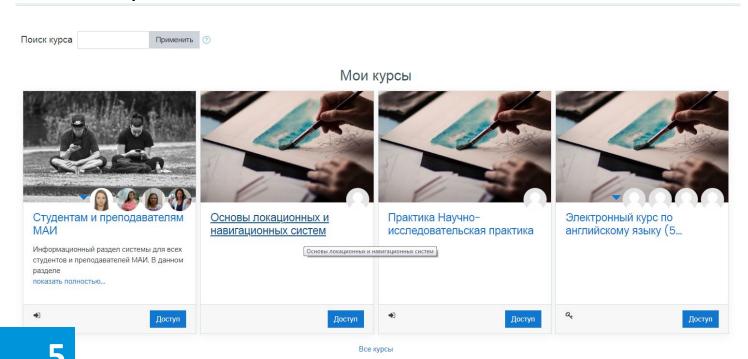
Этапы зачета

Зачет проходит в 4 этапа:

- 1. За 30 минут до начала зачета в ЛМС будут загружены билеты.
- 2. В момент начала экзамена каждому студенту генерируется случайный номер билета из загруженных.
- 3. Студенту дается 60 минут для написания ответа на билет и 10 минут для сканирования или фотографирования написанного материала и отправки на указанную электронную почту. По истечению данного времени ответы приниматься не будут.
- 4. Устный разговор с преподавателем в индивидуальном порядке в разделе «Видеолекция» в ЛМС.

Структура билета

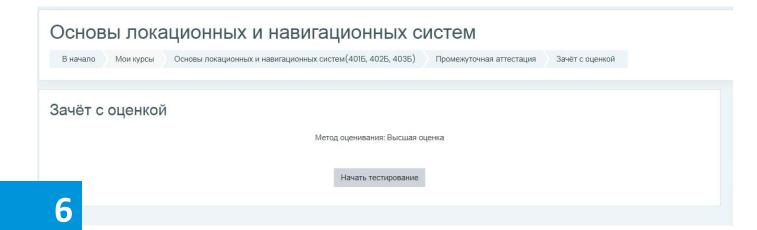
Билет включает в себя 2 вопроса из различных тем.


Каждый вопрос требует подробного ответа, включая иллюстрации и вывод формул (при необходимости).

УТВЕРЖДАЮ Зав. кафедрой	Кафедра 410
В. В. Кирдяшкин «	Дисциплина: Основы локационных и навигационных систем
Билет №_	<u>Y</u>
вопросы:	
1. Вопрос №1	
2. Вопрос №2	

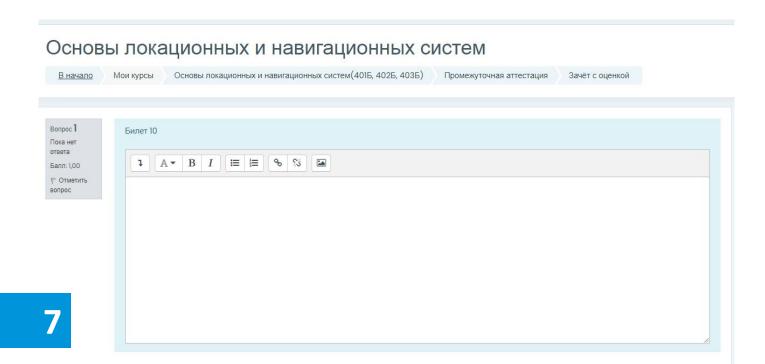
Для получения билета необходимо зайти в личный кабинет студента на https://lms.mai.ru

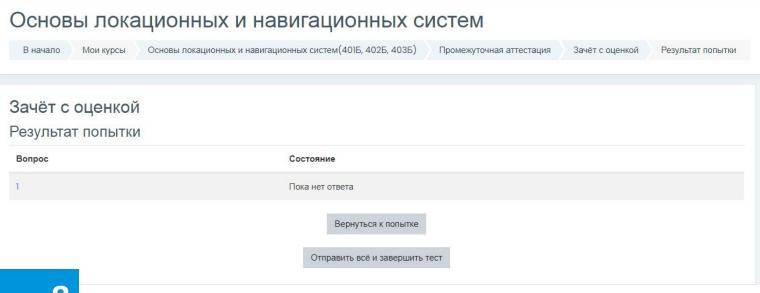
Открыть курс «Основы локационных и навигационных систем».



Найти раздел <u>Промежуточная аттестация</u> и войти в пункт <u>Зачет с оценкой</u>

Промежуточная аттестация


Затем нажать кнопку «<u>Начать тестирование</u>»


После появления данного окна начинается отсчет времени до конца экзамена.

На данном экране вы увидите номер своего билета.

После отправки ответа на почту преподавателя завершить экзамен в системе ЛМС, нажав кнопку <u>Отправить все и завершить тест</u>.

Часть 2

Консультация по вопросам курса

Вопросы к зачету

Тема 1. Радиосигналы и электромагнитные волны.

- 1. Радиосигнал (сигнал).
- 2. Спектральный анализ периодических сигналов.
- 3. Спектральный анализ непериодических сигналов.
- 4. Корреляция и автокорреляция.
- 5. Фильтрация сигнала.
- 6. Белый шум. Отношение сигнал-шум.
- 7. Электромагнитная волна.

Тема 2. Физические принципы радиолокации и радионавигации.

- 8. Общие сведения о радиолокации и радионавигации, понятия и определения, задачи и виды радиолокации. *
- 9. Классификация радиолокационных и радионавигационных систем, виды радионавигации.
- 10. Импульсный метод измерения дальности и его особенности.
- 11. Фазовый метод измерения дальности и его особенности.
- 12. Частотный метод измерения дальности и его особенности.
- 13. Принцип измерения радиальной скорости на основе эффекта Доплера.
- 14. Принципы измерения на правления на цель (радиопеленгация). Метод максимума.
- 15. Принципы измерения на правления на цель (радиопеленгация). Метод минимума.
- 16. Принципы измерения на правления на цель (радиопеленгация). Равносигнальный метод.
- 17. Фазовый метод радиопеленгации и его особенности.
- 18. Глобальная и местная система координат.
- 19. Виды радионавигации метод счисления пути.
- 20. Виды радионавигации обзорно-сравнительный метод.
- 21. Виды радионавигации позиционные методы.
- 22. Тактические и технические характеристики радиолокационных систем.

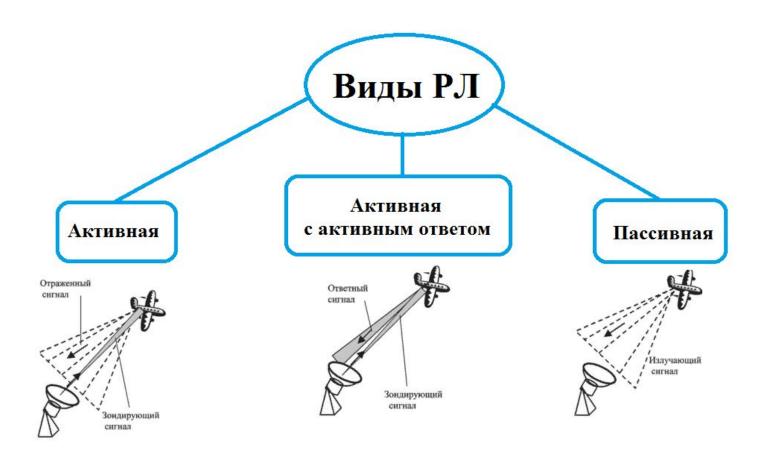
Вопросы к зачету

Тема 3. Максимальная дальность действия.

- 23. Максимальная дальность действия активной радиолокационной системы в свободном пространстве.
- 24. Максимальная дальность действия пассивной радиолокационной системы в свободном пространстве. *
- 25. Максимальная дальность действия активной радиолокационной системы с активным ответом в свободном пространстве.
- 26. Максимальная дальность действия активной радиолокационной системы в свободном пространстве при работе с когерентной и некогерентной пачкой радиоимпульсов.
- 27. Влияние атмосферы на дальность обнаружения рефракция.
- 28. Влияние атмосферы на дальность обнаружения затухание.
- 29. Влияние земной поверхности на дальность обнаружения сферичность Земли.
- 30. Влияние земной поверхности на дальность обнаружения отражение от земной поверхности.

Тема 4. Отражающие свойства цели.

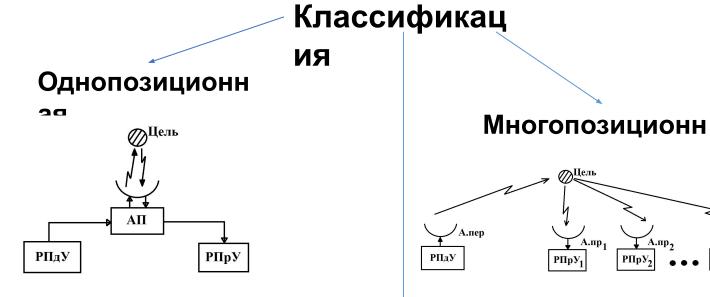
- 31. Общие сведения об отражающих свойствах цели (эффективная площадь рассеяния).
- 32. Классификация целей.
- 33. Примеры элементарных точечных целей.
- 34. Сложные точечные цели.
- 35. Методы определения эффективной площади рассеяния реальных целей.
- 36. Эффективная площадь рассеяния реальных целей (примеры).
- 37. Эффективная площадь рассеяния поверхностной цели.
- 38. Эффективная площадь рассеяния объёмной цели.

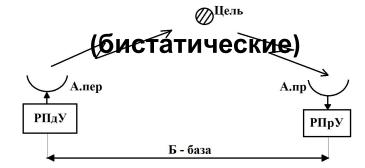


«Общие сведения о радиолокации и радионавигации, понятия и определения, задачи и виды радиолокации».

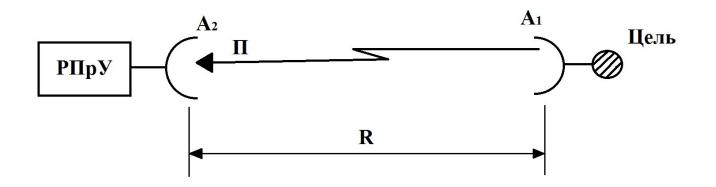
Ответ должен содержать:

- Определение Радиолокации и Радионавигации.
- Задачи Радиолокации и Радионавигации.
- Виды РЛ и их достоинства и недостатки.
- Классификация РЛС по расположению аппаратуры в пространстве.





	Активная РЛ	Активная с активным ответом	Пассивна я
Достоинства	Обнаружение объектов, которые не являются источниками радиоволн.	Возможность регулирования мощности. Возможность приема и передачи кодированных сигналов	Простота и скрытность.
Недостатки	Большие энергетически е затраты.	Сложность (необходимо наличие ответчика у цели)	Трудности в измерении параметров сигнала и объекта.



Двухпозиционн ые

«Максимальная дальность действия пассивной радиолокационной системы в свободном пространстве».

$$\Pi = \frac{P_1 \cdot h_1 \cdot G_1}{4\pi R^2}$$

$$P_{A2} = S_2 \cdot \Pi$$

$$P_{2} = h_{2} \cdot P_{A2} = h_{2} \cdot S_{2} \cdot \Pi = \frac{P_{1} \cdot h_{1} \cdot G_{1} \cdot h_{2} \cdot S_{2}}{4\pi R^{2}} = \frac{P_{1}h_{1}G_{1}h_{2}G_{2} \cdot \lambda^{2}}{(4\pi)^{2} \cdot R^{2}}$$

При
$$R = R_{\text{maxo}}$$
; $P_2 = P_{\text{пор}}$

$$R_{\text{max}\,o} = \sqrt{\frac{P_1 \cdot h_1 \cdot h_2 \cdot G_1 \cdot G_2 \cdot \lambda^2}{(4\pi)^2 P_{nop}}}$$

λ – длинна волны излучаемого сигнала

Р₁ – Мощность передатчика

 $h_1 - K\Pi$ Д передающего тракта

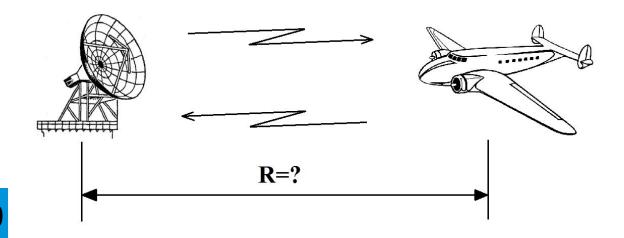
 G_1 – КНД передающей антенны

 $h_{2} - K\PiД$ приемного тракта

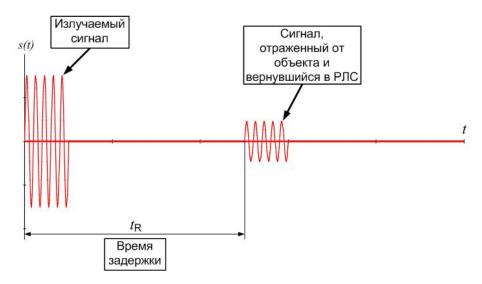
 S_{2}^{2} — Эффективная площадь приемной антенны

 Π – Плотность потока мощности у РПрУ, пришедшего от цели.

Пример билета

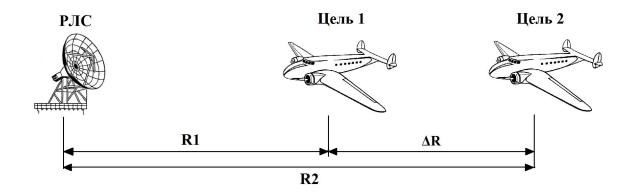


Зав. кафодрой	Кафедра410_
В. В. Кирдяшкин « <u>03</u> » <u>(2</u> <u>20</u> ² G.	Дисциплина: Основы локационных и навигационных систем
Билет Л	N <u>2</u> X
вопросы:	
1. Импульсный метод измерения даль	ности и его особенности.


1. <u>Импульсный метод измерения</u> дальности и его особенности.

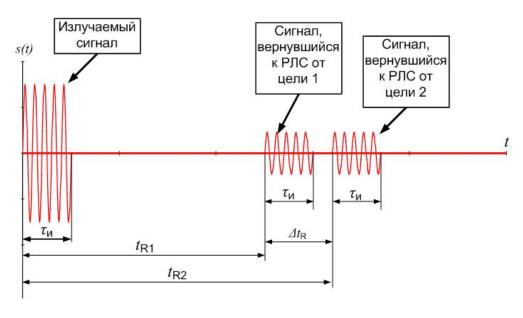
Принцип основан на свойстве прямолинейного распространении радиоволн. ЭМВ проходит путь РЛС – объект – РЛС.

Импульсное измерение дальности можно представить как:



$$R = \frac{c \cdot t_R}{2}$$

Разрешающая способность по дальности.


δR – Минимальное расстояние между двумя целями, при котором можно раздельно измерить до каждой.

ЧАСТЬ ЭКРАНА ПОД ЗАПИСЬ (контентом не заполнять)

Разрешающая способность по дальности.

$$\delta R = \frac{c \cdot \tau_u}{2}$$

На эту часть экрана можно добавлять текст, который преподаватель может подсмотреть или за счёт которого может дополнять свои мысли.

Но важно! Это не должен быть полный суфлёр.

Минимальная дальность («мертвая зона»).

R_{min} определяется как расстояние от РЛС до цели ближе которой расстояние до объекта измерить нельзя, так как на время излучения приемник закрыт.

В идеальном случае, при $t_{Rmin} = \tau_{\mu}$

$$R_{\min} = \frac{c \cdot \tau_u}{2}$$

2. Влияние атмосферы на дальность обнаружения – рефракция

Искривление траектории распространения радиоволн обусловленное неоднозначностью атмосферы.

ε – относительная диэлектрическая проницаемость сферы.

 $n=\sqrt{\epsilon}$ - коэффициент преломления.

2. Влияние атмосферы на дальность обнаружения – рефракция

При неоднородной сфере, например, если состояние атмосферы меняется с высотой, то n зависит от H.

Скорость изменения коэффициента преломления:

$$grad(n) = -\frac{dn(H)}{dH} = -\frac{dn}{dH} = \frac{1}{\rho_T}$$

- 2. Влияние атмосферы на дальность обнаружения рефракция
 - 1. Рефракция отсутствует

$$\frac{dn}{dH} = 0$$

2. Отрицательная рефракция

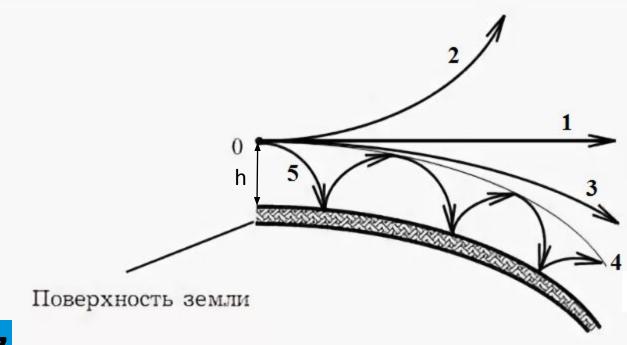
$$\frac{dn}{dH} > 0$$

3. Положительная рефракция

$$\frac{dn}{dH} < 0$$

4. Критическая рефракция

$$\frac{dn}{dtH} = 0.157 \cdot 10^{-6} \left[\frac{1}{-1} \right]$$


5. Сверхрефракция

$$\frac{dn}{dH} < \left(\frac{dn}{dH}\right)_{KP}$$

2. Влияние атмосферы на дальность обнаружения – рефракция

По величине коэффициента преломления различают следующие виды рефракции:

2. Влияние атмосферы на дальность обнаружения – рефракция

Для расчета траектории радиоволн вводят понятие – эффективный радиус Земли.

$$\rho_{\ni\phi} = \frac{1}{\frac{1}{R_3} + \frac{dn}{dH}}$$

Кривизна рассчитывается как:

$$\frac{1}{\rho_{20}} = \frac{1}{R_3} + \frac{dn}{dH}$$

Далее – ответы на вопросы студентов