Лабораторная работа №4 Работа с данными AIRS/AQUA

Геометрия сканирования AIRS/AQUA

Спектр AIRS

Основные продукты AIRS

A — Ascending(дневные); D — Descending(ночные)

Temperature_A;

TotH2OVap_A;

GPHeight_A;

CloudTopPres_A;

TotO3_A;

TotCO_A;

TotCH4_A;

OLR_A;

TropPres A; TropHeight A; CloudFrc A; CloudTopTemp A; O3 VMR A; CO VMR A; CH4 VMR A; CIrOLR A.

Задание №1: Работа с HDF4

Откройте файл AIRS.*.L3.std.Mon*.hdf данных AIRS в HDFview, используйте пункт Open Read-Only;

Просмотрите атрибуты файла, в какой период времени была выполнена спутниковая съемка?

Отобразите содержимое массива SurfAirTemp_A или SurfAirTemp_D (температура приземного слоя воздуха). Для этого откройте закладку ascending или descending, после закладку «Data Fields». Дневные или ночные данные вы построили?

Задание №2: AIRS и QGIS

Постройте в QGIS поле ночная температура приземного слоя воздуха;

Используйте калькулятор растров для преобразования данных из К в С (-273);

Задайте цветовую палитру для полученного изображения, где : -15 (синий) 0 (белый) +15 (красный);

Добавьте в проект слой Субъекты РФ, больше или меньше нуля температура приземного слоя воздуха в Алтайском крае и Республике Алтай? Для удобства анализа

Задание №3: «Озоновая дыра»

Постройте в QGIS поля «полное содержание озона» TotO3_A и TotO3_B за 2004 и 2014 годы;

Найдете среднесуточные значения за 2004 и 2014 годы. Для этого используйте калькулятор растров.

Добавьте в проект векторный слой WORLD.

Создайте цветную палитру для полученных полей; В каких областях земли озона много, а в каких мало? Где находится «озоновая дыра»?