

Цель работы

Изучение конструкции и исследование редуктора с цилиндрическими прямозубыми колесами, выполнение кинематического и силового расчетов, составление эскизов опор валов.

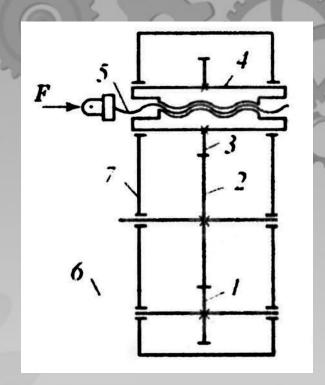


Схема установки

Лабораторная работа проводится на препарированных механизмах.

Кинематический механизм состоит из винтовой пары с трением скольжения и редуктора с цилиндрическими зубчатыми колесами. От электродвигателя — 6 вращающий момент передастся на входной вал-шестерню — 1, затем через зубчатые колеса — 2 на зубчатое колесо — 3, которое жестко соединено с гайкой ходового винта — 4. При вращении гайки 4 ходовой винт — 5 совершает поступательное движение.

Ход работы

- 1. Замеряем штангенциркулем межосевые расстояния а, на препарированных механизмах
- 2. Вращая гайку ходового винта, подсчитываем числа зубьев колес

- 3. Определяем передаточное число *и* для каждой ступени
- 4. Вращая гайку ходового винта, подсчитываем числа зубьев колес *z*

Вычисления:

$$u=rac{z_2}{z_1}=2$$
,18 — для 1 ступени $u=rac{z_2}{z_3}=1$,83 — для 2 ступени

5. Вычисляем модуль зацепления *т*

FOCT 9563-60

Вычисления:

6. Из-за неточностей замера $u = \frac{Z_2}{Z_1} = 2,18$ – для 1 ступен межосевого расстояния полученное значение модуля $u = \frac{Z_2}{Z_3} = 1,83$ – для 2 ступен может отличаться от стандартного значения, по-этому его надо согласовать с

Стандартные значения модуля, мм											
Ряд 1	0,3	0,4	0,5	0,6	0,8	1,0	1,25	1,5	2,0	2,5	
Ряд 2	0,35	0,45	0,55	0,7	0,9	1,125	1,375	1,75	2,25	2,75	

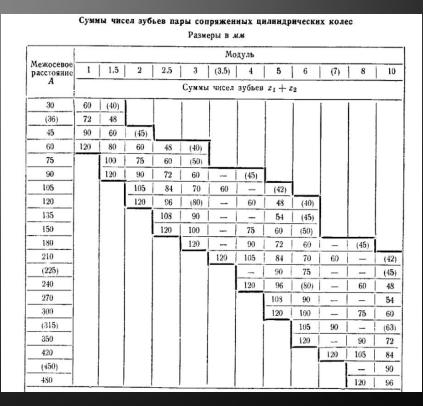
Вычисления:

 $u=rac{z_2}{z_1}=2$,18- для $1\,$ ступени

 $u = \frac{z_2}{z_2} = 1,83 -$ для 2 ступені

Вычисления:

- 7. Определяем диаметр делительной окружности *d*
- 8. Определяем диаметр окружности вершин *d*_a
- 9. Определяем диаметр окружности впадин *d_f*


Вычисления:

 $u = \frac{z_2}{z_1} = 2,18$ – для 1 ступени = $\frac{z_2}{z_1} = 2,18$ – для 1 ступен

$$u = \frac{\overline{z_2}}{z_3} = 1,83$$
 – для 2 ступежи $\pm \frac{\overline{z_2}}{z_3} = 1,83$ – для 2 ступен

10. Из-за неточностей замера межосевого расстояния полученное значение *а*^w берем согласно таблице

Исходя из таблицы

аw для 1 ступени будет равняться —

135

аw для 2 ступени будет равняться — 60

- 11. Измеряем ширину зубчатых колес b Для 1 и 2 ступени b = 20 мм
- 12. Определяем относительную ширину Ψ_a

Вычисления:

$$u=rac{z_2}{z_1}=2$$
,18 — для 1 ступени $u=rac{z_2}{z_3}=1$,83 — для 2 ступени

=

- 13. Частоту вращения *п* берем из таблицы, согласно варианту
- 14. Вычисляем вращательный момент M_{κ}
- 15. Вычисляем мощность W

Вычисления:

$$u=rac{z_2}{z_1}=2$$
,18 — для 1 ступени $u=rac{z_2}{z_3}=1$,83 — для 2 ступени

Вычисления:

$$u=rac{z_2}{z_1}=2,18$$
 – для 1 ступени $u=rac{z_2}{z_3}=1,83$ – для 2 ступени

Вычисления:

$$u=rac{z_2}{z_1}=2$$
,18 — для 1 ступени $u=rac{z_2}{z_3}=1$,83 — для 2 ступени

Результаты замеров и расчетов

Наименование	Обозначение и размерность	I ступень	ступень			
величины	размерноств	1	2	2'	3	
Число зубьев	Z	33	72	18	33	
Передаточное число	и	2,′	18	1,83		
Межосевое расстояние (замеренное значение)	а _{нэ} мм	13	0	65		
Модуль зацеп- ления (расчёт- ное значение)	т, мм	2,4	48	2,5		
Модуль зацепления (согласованный с ГОСТ 9563-60)	<i>m</i> , мм	2,5		2,5		
Межосевое расстояние (уточнённое значение)	а _{из} мм	135		60		
Диаметр дели- тельной окружности	<i>d</i> , мм	82,5	180	45	82,5	
Диаметр окружности вершин	d_a , MM	76,25	173,75	38,75	76,25	
Диаметр окружн. впадин	d_f , mm	87,5	185	50	87,5	
Ширина зубча- тых колёс	<i>b</i> , мм	20		20		
Относительная ширина	$\Psi_a = b/a_w$	0,148		0,3		
Частота враще- ния	<i>п</i> , об/мин	1400		1400		
Вращающий момент	М _к , мм∙Н	29	9355	24417		
Мощность	<i>W</i> , Вт	4,3•10³		3,6•10 ³		

Мы изучили конструкции и исследовали редуктор с цилиндрическими прямозубыми колесами, выполнили кинематический и

силовой расчеты

