Prediction of Postoperative Complications in Cardiac Surgery

Master Thesis

Dina Zverinski

Supervisors: Prof. Thomas Hofmann, Dr. Carsten Eickhoff, Dr. Alexander Meyer

Outline

Problem Definition

Data Set

Methods

Results & Discussion

Conclusion

Problem Definition

Motivation

Huge amounts of data collected at the intensive care unit (ICU)High workload for the ICU staff

Harder to recognize postsurgical complications

- Early recognition can lower the risk of late complications
- No clinical real-time decision support

system

Postoperative Bleeding

Coagulation Problems:

Bleeding due to non-clotting

Treatment: transfusion (blood products)

Surgical Bleeding:

Unstaunched bleeding

Treatment: transfusion at first, if no

improvement, surgical re-exploration

Early recognition can be crucial

Hard to distinguish at the beginning!

Problem Statement

Predicting the need for surgical re-exploration due to

postoperative bleeding in real-time.

Related Work

Electronic Health Records (EHRs) for prediction

Mortality prediction in real-time at the ICU

Methods: e.g. logistic regression, deep learning

Risk factor analysis of surgical bleeding

Data Set

8

Patients

Bleeding patient: surgical re-exploration within 25 hours after initial surgery

Control group: no surgical re-exploration after initial surgery

All initial surgeries are open heart surgeries

Adult patients only (18+)

3650 patients in total (50% bleeding patients)

Features

Continuous or categorical

Static features: e.g. age, gender, initial surgery type, ...

Dynamic features: e.g. bleeding rate, blood pressure, laboratory results, ...

72 features in total

Time Slices

Time window: end of initial surgery until start of surgical re-exploration

Time slice: feature vector (one per half an hour) labelled with its patient's class

69996 time slices in total

Missing values imputed with:

last measured value

default value

Representation

Methods

13

Clinical Baseline

Decision in favor of a surgical re-exploration, if the bleeding rate is

- > 400 mL/h for 1 hour
- > 300 mL/h for 3 hours
- > 200 mL/h for 4 hours

Otherwise, no surgical re-exploration needed

from: Robert M. Bojar. Manual of Perioperative Care in Adult Cardiac Surgery. John Wiley & Sons, 2005.

Machine Learning Approaches

Naive Bayes

AdaBoost (Decision Trees)

Logistic Regression

Support Vector Machines (SVM)

K-Nearest Neighbors (KNN)

Feedforward Neural Network (FNN)

Recurrent Neural Network (RNN)

Figure from Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

Results & Discussion

Evaluation Metrics

- **P**: number of positive time slices
- N: number of negative time slices
- **TP**: number of true positive time slices
- **TN**: number of true negative time slices
- FP: number of false positive time slices
- FN: number of false negative time slices

Accuracy:	TP + TN	
ROC AUC: ar false positi	P + N rea under the true positive vs. ve rate curve	
Precision:	TD	
	IP	
Recall:	TP + FN	
F1 score:	TP P	
	precision * recall	
	precision + recall	

EHzürich

Results

Classifier	Accuracy	ROC AUC	F1
RNN	0.818*	0.889	0.802
FNN	0.797	0.874	0.777
Logistic Regression	0.789	0.855	0.769
AdaBoost	0.788	0.873	0.774
SVM	0.778	0.862	0.772
KNN	0.740	0.813	0.697
RNN-B	0.724	0.799	0.685
Naive Bayes	0.682	0.720	0.633
Clinical Baseline	0.655†	0.642	0.474

*Significantly better than all other classifiers on a significance level of $\alpha = 0.01$. †Significantly worse than all other classifiers on a significance level of $\alpha = 0.01$.

Accuracy

Different Feature Sets

Possible Time Savings

Given **actual time** *s* until re-exploration and the **first time** *f* RNN predicts re-exploration, the relative **saved time** d is defined as:

$$d = \begin{cases} \frac{s - (f+1)}{s} & \text{if } f \text{exists } \text{and} f + 1 < s \\ 0 & \text{otherwise} \end{cases}$$

Per-Patient-Specificity:

number of true negative patients number of negative patients

Mean Saved Time and Specificity per Patient over Different Likelihood Thresholds

Problem Complexity and Limitations

Ground truth unknown

Real-time prediction

Missing or incorrect data

Coarse temporal resolution

Conclusion

Conclusion

All approaches perform significantly better than the clinical baseline

RNN performs with

accuracy of 0.818

ROC AUC of 0.889

F1 score of 0.802

RNN could help decrease the time until re-exploration by up to 65%

Thank you!

ROC Curve

Distribution of Patients

Likelihood

Percentage of Patients over Prediction Changes

ETHzürich

RNN Classification Options

ETHzürich

Likelihood Mean Validation Accuracy of RNN-x Trained on Top x Features 0.80 0.78 Accuracy 0.76 0.74 0.72 ဖ S 4 c \sim 0 თ ω ဖ S 4 c 2 ~ ~ ~ . ~ PTT (Lab) **Central Venous Pressure** PCO2 (ABG) Aorta Surgery (ST) Platelets (Lab) Temperature Urine Flow Rate HB (ABG) **Bleeding Rate** Mean Blood Pressure PAC Systolic PAC CRP (Lab) Assist Device (ST) PH (ABG) Bretschneider (KS) Natrium (ABG) Mean Top x Feature

Feedforward Neural Network (FNN)

Final model:

Hidden layers: 1

Hidden nodes: 20

Activation function: sigmoid

Regularization: L2-norm

Recurrent Neural Network (RNN)

Final model:

Hidden layers: 1 (GRU)

Hidden nodes: 40

Activation function: sigmoid

