ЭНЕРГИЯ ГИББСА. НАПРАВЛЕННОСТЬ ХИМИЧЕСКИХ ПРОЦЕССОВ

Для изолированных систем направление и предел самопроизвольного протекания процесса определяется величиной изменения энтропии системы ΔS .

В неизолированных системах возможны процессы, сопровождающиеся уменьшением энтропии, например кристаллизация расплава, конденсация пара, протекающие в условиях отвода теплоты в окружающую среду.

Как рассматривалось ранее:

$$Q_p = \Delta U + P\Delta V + A'; \ \Delta S \ge \frac{Q}{T},$$

где A' – полезная работа, $P \cdot \Delta V$ – работа расширения

Для изобарно-изотермических условий (P, T = const):

$$T\Delta S \ge \Delta U + P\Delta V + A';$$

$$-A' \ge \Delta U + P\Delta V - T\Delta S = U_2 - U_1 + P(V_2 - V_1) - T(S_2 - S_1) =$$

$$= U_2 + PV_2 - TS_2 - (U_1 + PV_1 - TS_1);$$

$$G = U + PV - TS = H - TS,$$

где G — энергия Гиббса, функция состояния системы, убыль которой ($-\Delta G$) в обратимом изобарно-изотермическом процессе (P,T=const) равна максимально полезной работе:

$$\Delta G = -A'_{\text{макс.}}$$
 или $-\Delta G = A'_{\text{макс}}$ (1)

• Для решения вопроса о самопроизвольном протекании реакции в закрытых системах используют изменение энергии Гиббса (△G).

- Любая реакция при постоянных температуре и давлении протекает самопроизвольно в направлении убыли энергии Гиббса. Величина ΔG является критерием направленности самопроизвольного процесса в закрытой системе при P.T = const:
- если $\Delta G < 0$ процесс идет в прямом направлении;
- если $\Delta G > 0$ процесс идет в обратном направлении;
- При $\Delta G = 0$ реализуется состояние равновесия.

• В ходе самопроизвольного процесса в закрытых системах энергия Гиббса уменьшается до определенной величины, принимая минимально возможное для данной системы значение. Дальнейшее изменение энергии Гиббса при неизменных условиях невозможно, и система переходит в состояние химического равновесия, характеризующегося условием $\Delta G = 0$

 Убыль энергии Гиббса может быть определена из соотношения:

$$\Delta G = \Delta H - T \cdot \Delta S \tag{2}$$

• При *T* = **298,15 К и** *P* = **1 атм** выражение (2) имеет следующий вид:

$$\Delta G_{298,15}^{0} = \Delta H_{298,15}^{0} - 298,15 \cdot \Delta S_{298,15}^{0} \tag{3}$$

Где $\Delta G_{298,15}^0$ — стандартное изменение энергии Гиббса реакции при T=298,15 К и P=1 атм.

• Расчет стандартного изменения энергии Гиббса при *любой температуре* обычно проводят по приближенному уравнению, если не нужна высокая точность расчетов:

$$\Delta G_T^0 \approx \Delta H_{298,15}^0 - T \cdot \Delta S_{298,15}^0 \tag{4}$$

- Где ΔG_T^0 стандартное изменение энергии Гиббса реакции при любой температуре T и P=1 атм.
- Единицы измерения ΔG_T^0 кДж.

Для расчета $_{\Delta G_{298}^0,\ \Delta G_{T}^0}$ процесса необходимо:

- записать соответствующий процесс, указав агрегатные состояния веществ, участвующих в реакции;
- расставить стехиометрические коэффициенты;
- выписать из справочника величины $\Delta H_{f,298}^{0}{}^{\text{и}}$ $S_{f,298}^{0}{}^{\text{ц}}$;
- рассчитать значения ΔH_{298}^0 и ΔS_{298}^0 реакций и, подставив их в уравнение (4), найти значение ΔG_T^0 .

• При условии $\Delta G_T^0 = 0$ оба направления процесса равновероятны. Температура, при которой прямой и обратный процессы равновероятны, может быть определена в соответствии с формулой (4):

$$T = \frac{\Delta H_{298}^0}{\Delta S_{298}^0}$$

- Самопроизвольное течение реакции в закрытых системах контролируется как энтальпийным ($_{\Delta H_{298}}^0$), так и энтропийным ($_{T}\cdot_{\Delta S_{298}}^0$) факторами. Вклады энтальпийного и энтропийного факторов существенно зависят от температуры.
- Если $T \to 0$, то $\Delta G_T^0 \to \Delta H_{298}^0$ Таким образом, при низких температурах величина ΔG_T^0 и знак определяется величиной и знаком ΔH_{298}^0
- При *низких температурах* самопроизвольно протекают, как правило, *экзотермические реакции*.

- Если $T \to \infty$, то $\Delta G \xrightarrow{0}_{T} \leftarrow (-T \cdot \Delta S_{298}^{0})$.
- При высоких температурах величина и знак определяются величиной и знаком ΔS_{298}^0 .
- При *высоких температурах* самопроизвольно протекают, как правило, реакции, ведущие к *увеличению энтропии*.

Влияние температуры на направление химических реакций $\Delta G_T^0 \approx \Delta H_{298}^0 - T \cdot \Delta S_{298}^0$

ΔH_{200}^0	ΔS_{200}^{0}	ΔG_{T}^{0}	Принципиальная	
298	298	I	возможность протекания	
			прямой реакции	
_	+	_	Возможна при любой	
			температуре	
+	_	+	Принципиально невозможна.	
			Возможна в обратном	
			направлении	
_	<u>—</u>	+	Возможна при низких	
			температурах $(T < \Delta H_{298}^0)$ ΔS_{298}^0	
		_	ΔS_{298}^0	
+	+	+	Возможна при высоких	
			температурах $(T > \Delta H_{298}^0)$	
		_	$\frac{\overline{\Delta S_{298}^0}}{\Delta S_{298}^0}$	

• Так как энергия Гиббса является функцией состояния, расчет стандартной энергии Гиббса реакции ΔG_{208}^{0} проводится также по уравнению, вытекающему из закона Гесса. От суммы стандартных энергий Гиббса образования продуктов реакции вычитают стандартных энергий Гиббса образования исходных веществ с учетом стехиометрических коэффициентов:

$$\Delta G_{208}^{0} = \sum v_{i} \Delta G_{f,298 \text{ прод. } i}^{0} - \sum v_{j} \Delta G_{f,298}^{0}$$
 .B-B $_{j}$ (5)

 $\Delta G_{f,298}^{0}$ — стандартное изменение энергии Гиббса реакции образования 1 моль вещества из простых веществ при условии, что все участники реакции находятся в стандартных состояниях (T = 298,15 К и P = 1 атм).

Значения $\Delta G_{f,298}^0$ различных веществ и ионов приведены в справочной литературе.

- Для любой реакции при некоторых произвольно выбранных значениях давления и температуры можно рассчитать величину ΔG_T .
- Связь между ΔG_T и ΔG_T^0 выражается уравнением, получившим название **изотермы** Вант-Гоффа.

• для реакции:

$$a(A) + b(B) \rightarrow c(C) + d(D)$$

• записывается в виде:

$$\Delta G_T = \Delta G + RT \cdot \ln \frac{P_C^c \cdot P_D^d}{P_A^a \cdot P_B^b}$$

или в общем виде:

$$\Delta G_T = \Delta G_0 + RT \cdot \ln \frac{\prod_i P_i^{v_i} \text{продуктов реакции}}{\prod_i P_j^{v_j} \text{исходных в - в}}$$
(6)

P_i - начальные парциальные давления, при которых газы вступили в реакцию (атм);

 $\prod P_i^{v_i}$ продуктов реакции

произведение начальных парциальных давлений газообразных продуктов реакции в степенях их стехиометрических коэффициентов;

 $\Pi P_j^{\mathbf{v}_j}$ исходных в - в произведение начальных парциальных давлений газообразных исходных веществ в степенях их стехиометрических коэффициентов.

• Величина ΔG_{τ} в уравнении (6) – это изменение Гиббса, которое при данной энергии температуре T соответствует взаимодействию стехиометрических количеств (v_j) реагентов и образованию стехиометрических количеств (v_j) продуктов реакции при парциальных давлениях всех веществ (и исходных, и продуктов), заданных начальными условиями, и изменение в результате реакции не сказывается первоначально заданном составе реакционной смеси.

• **ΔG** ⁰_T стандартное изменение энергии Гиббса в уравнении изотермы имеет аналогичный смысл, для условий, которые являются стандартными: при заданной температуре Tпарциальные давления всех веществ равны 1 атм. Для данной реакции ΔG $^0_{\scriptscriptstyle T}$ является константой, которая определяется природой реакции и при заданной температуре T не зависит от парциальных давлений веществ.

Используя уравнение изотермы (6) для любой реакции при некоторых произвольно выбранных значениях давления и температуры можно рассчитать
 \(\Delta G_T \) (бесконечное множество значений) и сделать вывод о термодинамической вероятности протекания этой реакции при выбранных условиях.

- Анализ многочисленных экспериментальных данных показал, что при реальных изменениях условий (начальных парциальных давлений реагирующих веществ) второе слагаемое в уравнении изотермы Вант-Гоффа (6) не превышает |50 кДж| (≤ |50 кДж|). Это означает, что
- если $|\Delta G_T^0|$ > 50 кДж, то вывод о возможности или невозможности протекания реакции в любых реальных условиях можно сделать просто по знаку ΔG_T^0 .

- Процесс термодинамически **невозможен** как самопроизвольный при $\Delta G_T^0 >> 0$ (> 50 кДж).
- Если ΔG_T^0 << 0 (< –50 кДж), то процесс термодинамически возможен, протекает в прямом направлении практически необратимо.
- Значения ΔG_T^0 от -50 kДж до +50 kДж соответствуют обратимым процессам.

- Если начальные парциальные давления веществ, участвующих в реакции, равны 1 атм, то $\Delta G_T = \Delta G_T^O$, т.е. стандартному изменению энергии Гиббса.
- При равновесии $\Delta G_T = 0$. Следовательно, выражение под логарифмом для равновесных парциальных давлений совпадает с выражением для константы равновесия:

$$K_P = rac{\prod\limits_i^{p} P_i^{v_i}$$
продуктов реакции
$$\prod\limits_j^{p} P_j^{v_j}$$
исходных в - в

• Отсюда получаем одно из важнейших уравнений термодинамики, связывающее константу химического равновесия со стандартным изменением энергии Гиббса:

$$\Delta G_T^0 = -RT \cdot \ln K_p. \tag{7}$$

• Поскольку $\Delta G_{298}^0 \approx \Delta H_{298}^0 - T \Delta S_{298}^0$, то уравнение (7) примет вид:

$$-RT \ln K_P \approx \Delta H_{298}^0 - T\Delta S_{298}^0$$

- В равновесном процессе, протекающем при V,T = const, максимально полезная работа, произведенная системой, равна убыли энергии Гельмгольца (ΔF). Величина ΔF является критерием направленности самопроизвольного процесса в закрытой системе при V,T = const:
- При ΔF < 0 процесс идет в прямом направлении,
- при $\Delta F > 0 в обратном,$
- при $\Delta F = 0$ реализуется состояние равновесия.

T

• Изменение энергии Гельмгольца связано с изменением внутренней энергии и энтропии уравнением:

$$\Delta F = \Delta U - T\Delta S$$

• Выражение, аналогичное (7), можно получить для K_c в случае равновесий в растворах:

$$\Delta F_T^0 = -RT \cdot \ln K_c$$

• Если реакция протекает в растворах, то изменением объема можно пренебречь и считать, что $\Delta F \approx \Delta G$. В этом случае

$$\Delta G _{T}^{0} = -RT \cdot \ln K_{c}$$

Пример 1. Возможен ли в стандартных условиях процесс взаимодействия азота и кислорода воздуха

$$N_{2\,\Gamma} + O_{2\,\Gamma} = 2NO_{\Gamma}$$
 $\Delta H_{f,298}^{\circ}$, кДж/моль 0 0 90,2 S_{298}° , Дж/(моль · K) 191,5 205,04 210,6 $\Delta G_{f,298}$, кДж/моль 0 0 86,6 $\Delta H_{298} = 2\Delta H_{f,298}$ (NO) $-\Delta H_{f,298}$ (O_{2}) $-\Delta H_{298}$ (N_{2}) = = 2 · 90,2 $-$ 0 $-$ 0 = 180,4 кДж = 180 400 Дж; $\Delta S_{298}^{\circ} = 2S_{298}^{\circ}$ (NO) $-S_{298}^{\circ}$ (O_{2}) $-S_{298}^{\circ}$ (N_{2}) = = 2 · 210,6 $-$ 205,04 $-$ 191,5 = 24,66 Дж/К

• $\Delta G_{298}^{\circ} = \Delta H_{298}^{\circ} - T \Delta S_{98}^{\circ} = 180 \ 400 - 298 \cdot 24,66$ = 173 051 Дж = 173,051 кДж.

2 способ

- $\Delta G_{298}^{\circ} = 2\Delta G_{f,298}(NO) \Delta G_{f,298}(N_2) \Delta G_{f,298}(O_2) = 2 \cdot 86,6 0 0 = 173,2 кДж$
- Самопроизвольный процесс невозможен в стандартных условиях.

Пример 2. Определить давление разложения $3Fe_2O_3_{TB}$ $\rightleftharpoons 2Fe_3O_4_{TB}$ + $1/2O_2_{T}$ при 627° C. При какой температуре давление кислорода достигнет 1 атм (101 325 Па)?

$$3 \operatorname{Fe_2O_3}_{1 \operatorname{TB}} \rightleftarrows 2 \operatorname{Fe_3O_4}_{1 \operatorname{TB}} + 1/2 \operatorname{O_2}_{1 \operatorname{TB}}$$
 $\Delta H_{f,298}^{\circ}$, кДж/моль -822 $-1117,13$ 0 S_{298}° , Дж/(моль · K) 87 146,19 205,04. $\Delta H_{298}^{\circ} = 2 \Delta H_{f,298}^{\circ}$ (Fe $_3 \operatorname{O_4}$) + ΔH_{298}° (O $_2$) $-3 \Delta H_{f,298}^{\circ}$ (Fe $_2 \operatorname{O_3}$) = 2 · (-1117,13) + · 0 - 3(-822) = 231,74 кДж = 231 740 Дж

$$\Delta S_{298}^{\circ} = 2 \cdot S_{298} \text{ (Fe}_{3}O_{4}) + \cdot S_{8} \text{ (O}_{2}) - 3S_{8} \text{ (Fe}_{2}O_{3}) = 2 \cdot 146,19 + 205,04 - 3 \cdot 87 = 135,32$$
 $\Delta K/K$
 $\Delta S_{298}^{\circ} = \Delta H/K$
 $\Delta S_{298}^{\circ} = \Delta H/K$

 $K_{n} = 4,15 \cdot 10^{-7}$

•
$$K_p = P_{(O_2)}^{\frac{1}{2}}$$
,

- $P_{(Q_{\nu})} = (K_{\rho})^2 = 1.72 \cdot 10^{-13} \text{ aTM}.$
- Если давление кислорода равно 1 атм то

$$\lg K_p = \lg 1^{\frac{1}{2}} = \lg 1 = 0$$
 и $\Delta G_T^{\text{o}} = -8,314 \cdot T \cdot \ln K_p = 0.$

Найдем температуру, при которой $\Delta G = 0$:

$$\Delta G \xrightarrow{\Delta H_{29}^{\circ}} \Delta H \xrightarrow{298} = 0$$
, отсюда
 $T = \begin{bmatrix} \Delta S_{298}^{\circ} & = 0 \\ -135,32 & = 1713 \text{ K} \end{bmatrix}$

Пример 3. Определить ΔH $^{\circ}_{298}$ и ΔS процесса испарения бромида олова (II). Давление насыщенного пара $SnBr_2$ при температуре $516^{\circ}C$ составляет 0,13 атм, а при $636^{\circ}C-1$ атм

$$SnBr_{2 \times} \rightleftharpoons SnBr_{2 \Gamma}; K_p = P(_{SnBr2})_{\Gamma}$$

$$\begin{cases} -RT_1 \ln K_{p_1} = \Delta H_{290}^{o} - T_1 \Delta S_{298}^{o}; \\ -RT_2 \ln K_{p_2} = \Delta H_{298}^{o} - T_2 \Delta S_{298}^{o}; \end{cases}$$

$$K_{p1} = P_{1 \text{ (SnBr2)}} = 0.13 \text{ atm}, K_{p2} = P_{2 \text{ (SnBr2)}} = 1 \text{ atm}$$

 $T_1 = 516 + 273 = 789 \text{ K}, T_2 = 909 \text{ K}.$

Так как In1 = 0, то из второго уравнения можно выразить ΔH через ΔS (ΔH_{29}° = 909 ΔS) и подставить в первое уравнение:

$$-8,314 \cdot 789 \cdot \ln 0,13 = 909\Delta \$_{98} - 789\Delta \$_{98} = 120\Delta \$_{98}$$
; $\frac{-8,314 \cdot 789 \cdot \ln 0,13}{120}$ $= 111,55 \, \text{Дж/K}$ $\Delta H = 909\Delta S = 909 \cdot 111,55 = 101 \, 400 \, \text{Дж} = 101,4 \, \text{кДж}.$

Пример 4. Определить равновесную концентрацию N_2O_{4r} при стандартной температуре, если начальные концентрации составляли: $C_o(NO_2) = 5$ моль/дм³; $C_o(N_2O_4) = 2$ моль/дм³

$$2NO_{2r} \rightleftharpoons N_{2}O_{4r}$$

$$\Delta G_{298}^{\circ} = \Delta G_{f,298}^{\circ} (N_{2}O_{4}) - 2G_{f,298}^{\circ} (NO_{2}) = 98,4 - 2.51,55 = -4,7 \text{ кДж.}$$

 $\Delta G_{298}^{\circ} = -RT \ln K_p = -8,314 \cdot 298 \cdot \ln K_p$

$$K_P = e^{\frac{-\Delta G^0}{8,314 \cdot 298}} = \frac{4700}{e^{8,314 \cdot 298}} = 6,67$$

$$K_P = K_C (RT)^{\Delta n}; \quad \Delta n = -1$$

$$R = \frac{HMc}{Moлb} = \frac{101325 \cdot 22, 4}{K 273} = 8,314$$

$$R = \frac{RM}{RO \pi b} = \frac{a \ln 22.4}{R273} = 0.082 \frac{3}{.}$$

$$K_P = K_C (RT)^{-1};$$

$$K_C = K_P \cdot RT = 6,67 \cdot 0,082 \cdot 298 \approx 163;$$

	2NO _{2 Γ}	⇄	N_2O_4
Начальная C_{0}	5		2
Изменение ΔC	-2x		$+_{\mathbf{X}}$
Равновесная С	5-2x		2 + x

$$K_C = \frac{2+x}{(5-2x)^2} = 163$$

 x_1 = 2,4 и x_2 = 2,6. Условию задачи удовлетворяет только значение 2,4. Равновесная концентрация N_2O_4 составит 2 + 2,4 = 4,4 моль/дм³

Спасибо за внимание!

