
Получени

1) Получение из сырья оксида серы

(IV).
$$S + O_2 = SO_2$$

$$2H_2S + 3O_2 = 2SO_2 + 2H_2O$$

$$4FeS_2 + 11O_2 = 2Fe_2O_3 + 8SO_2$$

Получени

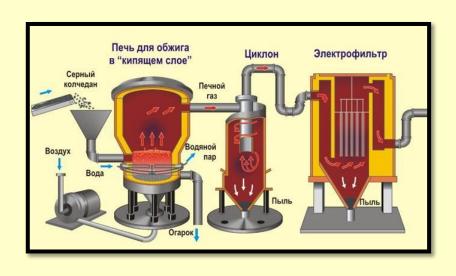
2) Окисление оксида серы (IV) до оксида серы

(VI) +4 0
$$t_1V_2O_5 +6 -2$$

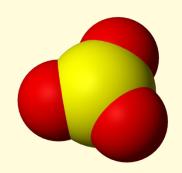
2SO₂ + O₂ \leftrightarrow 2SO₃ + Q

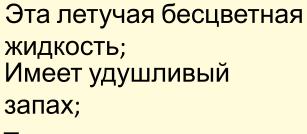
реакция

веватимая;

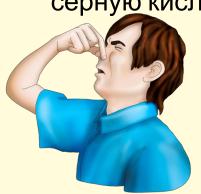

каталитическая;

восстановительная

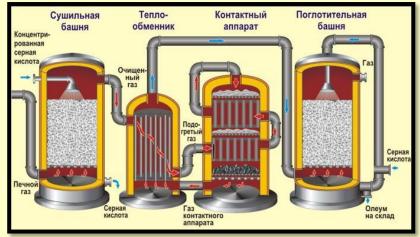

веакния;

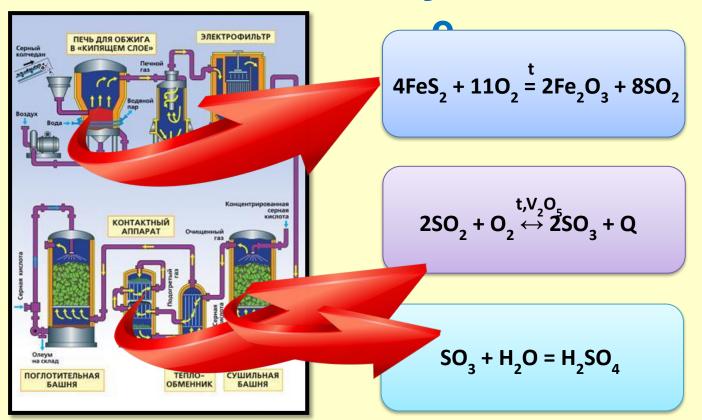

регардувнная;

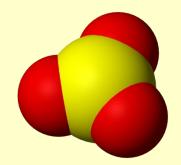
экзотермическая.



При растворении в воде образует серную кислоту.



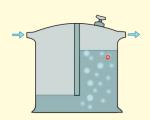

Получени

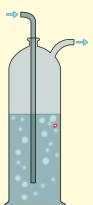

3) Растворение оксида серы (VI) в концентрированной серной кислоте. SO₃ + H₂O = H₂SO₄


Олеум – раствор оксида серы (VI) в безводной серной кислоте.

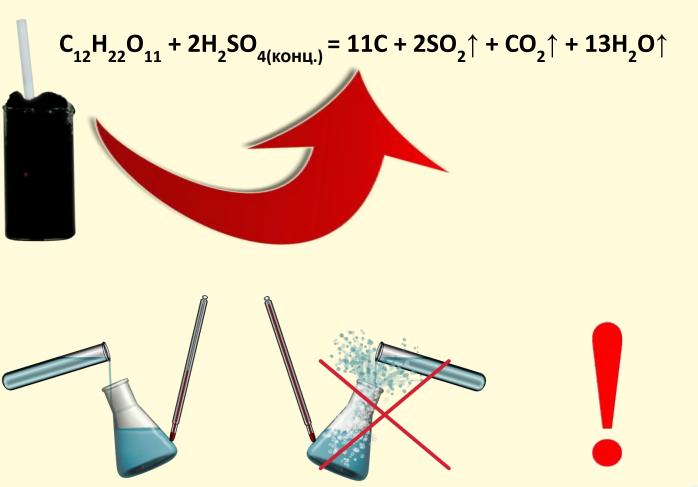
Получени

VIDEOUROKI.


Серная кислота – бесцветная маслянистая и тяжёлая жидкость.

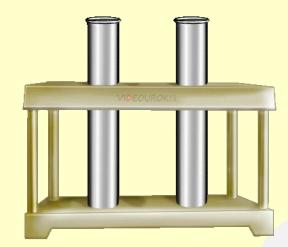


Она обладает сильными гигроскопическими свойствами.



Её используют для осушения газов или других веществ.

Изменение окраски индикаторов Лакмус – красный Метилоранж – красный


Реакции с металлами до водорода

Изменение окраски индикаторов Лакмус – красный Метилоранж – красный

Реакции с металлами до водорода

Реакции с основными оксидами

Реакции с основными оксидами

Реакции с основными оксидами

$$CuO + H_2SO_4 = CuSO_4 + H_2O$$

Сульфа Вод
Т а

2NaOH +
$$H_2SO_4 = Na_2SO_4 + 2H_2O$$

Сульфа Вод
OH- + H+ = H_2O_9

2NaOH +
$$H_2SO_4 = Na_2SO_4 + 2H_2O$$

Сульфа Вод
OH- + H+ = H_2O_3

2NaOH +
$$H_2SO_4 = Na_2SO_4 + 2H_2O_{Cyльфа}$$
 Вод T ОН $^-$ + H^+ = H_2PO_9

$$CuSO_4 + 2NaOH = Cu(OH)_2 \downarrow + Na_2SO_4$$

Гидрокси² + Сульфа

 $Cu^{2+} + 2OH_{Me} Cu(OH)_2 \downarrow$ натрия

$$CuSO_4 + 2NaOH = Cu(OH)_2 \downarrow + Na_SO_{\text{Гидрокси}^2} \downarrow + Na_SO_{\text{Сульфа}}$$

$$Cu^{2+} + 2OH^{-}$$

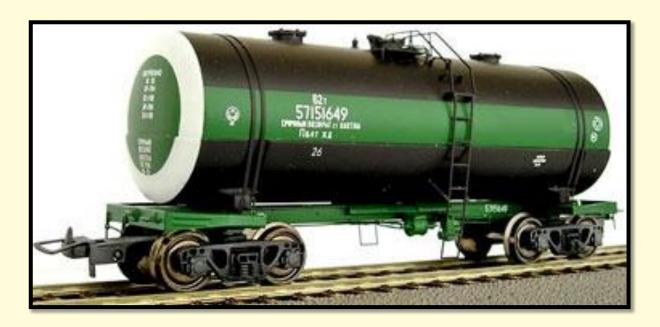
$$CuSO_4 + 2NaOH = Cu(OH)_2 \downarrow + Na_2SO_1$$
 Сульфа

 $Cu^{2+} + 2OH^{-}$ Ме Qu(OH) $_2 \downarrow$ натрия

$$Cu(OH)_2 + H_2SO_4 = CuSO_4 + 2H_2O_{Cyльфа} + 2H_2O_{BOД}$$

 $Cu(OH)_2 + 2H^+ = Cu2h + 12H_2O_2$


Реакции с солями



Реакции с солями

Концентрированная серная

Железо и алюминий пассивируются концентрированной серной кислотой.

Концентрированная серная кислота

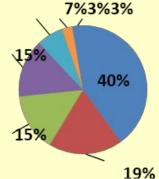
Реакции с солями

Серная кислота – это двухосновная кислота. Соли серной кислоты сульфаты.

 Na_2SO_4 – сульфат **NaHSO₄** – гидросульфат

натрия **Качественной реакцией** на серную кислоту и её

соли является ион Ba²⁺.


$$Ba^{2+} + SO_4^{2-} = BaSO_4 \downarrow$$

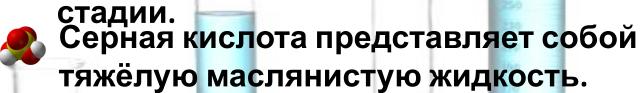
Доля расхода серной кислоты на различные нужды промышленного производства

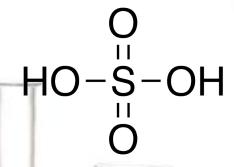
- ■Удобрения
- ■Моющие средства
- ■Краски
- ■Волокна
- ■Пластмассы
- ■Очистка металла
- ■Другие области 7%3%3%

Соли серной кислоты

Глауберова соль Na, SO₄ · 10H, O

 $CaSO_{1} \cdot 2H_{2}O$ Гипс


Сульфат бария BaSO₄


Медный купорос $CuSO_4 \cdot 5H_2O$

При разбавлении концентрированной кислоты следует кислоту приливать к воде, а не наоборот.

Серная кислота и её соединения находят широкое применение в промышленности.

