Quantum computers, quantum computations

Содержание

Слайд 2

Take-home message The quest for a quantum computer reminds me of

Take-home message

The quest for a quantum computer reminds me of the

endless quests for WIMPs, strings, sparticles, magnetic monopoles, etc. Succeed they or not, they bring to development of new knowledges and technologies, push the most talented people into science and keep fun from research. Same as it ever was.
Слайд 3

Motivation Microprocessor 80486dx2 Electronic lamp Meters Nanometers Moore’s law 40 years

Motivation

Microprocessor 80486dx2

Electronic lamp

Meters

Nanometers

Moore’s law

40 years

Слайд 4

Outline History Principles of quantum computation Di Vincenzo criteria Superconducting qubit

Outline

History
Principles of quantum computation
Di Vincenzo criteria
Superconducting qubit
Some algorithms
Architecture
Challenges and problems

Слайд 5

History in facts 1982 – R. Feynman predicts possibility of quantum

History in facts

1982 – R. Feynman predicts possibility of quantum computations

1935

– A. Einstein doubts in adequacy of quantum mechanics & introduces entangled states

2007 – D-Wave Systems presents 16 qubit quantum processor Orion

Слайд 6

2012 – S. Haroche & D. J. Wineland winn Nobel prize

2012 – S. Haroche & D. J. Wineland winn Nobel prize

for for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems"

2015 – Google tests the D-Wave 2X quantum annealer, ~1000 qb

Слайд 7

History in diagrams Classical vs quantum: speed up

History in diagrams

Classical vs quantum: speed up

Слайд 8

What is beyond? Down to small size = forward to quantum physics

What is beyond?

Down to small size = forward to quantum physics


Слайд 9

Quantum Mechanics: Quantum Information

Quantum Mechanics: Quantum Information

Слайд 10

What is all about or new applications of quantum physics “Hacking”

What is all about or new applications of quantum physics

“Hacking” crypto
Keeping

secrets
Data search speed up
Bioinformatics
Outer space opening
Fundamental problems

Factorization of 256-digit number:
Classic – 2N ≈1070 years
Quantum – N2 ~ 10 seconds

Слайд 11

What is QC? QC is the physical device that utilizes quantum properties for information processing D-Wave

What is QC?

QC is the physical device that utilizes quantum properties

for information processing

D-Wave

Слайд 12

Classical ≠ Quantum Hardware Software Boolean logic Quantum logic Classical Quantum

Classical ≠ Quantum

Hardware

Software

Boolean logic

Quantum logic

Classical

Quantum

(Principle of
excluded middle)

(Superposition & hidden symmetry)

Слайд 13

Algorithm complexity Easy Hard Input Classic C Quantum C Hard

Algorithm complexity

Easy

Hard

Input

Classic C

Quantum C

Hard

 

Слайд 14

Qubit = Quantum bit Bit Qubit

Qubit = Quantum bit

Bit

Qubit

Слайд 15

Entangled states (EPR)

Entangled states (EPR)

Слайд 16

Interference – Schrödinger's Cat

Interference – Schrödinger's Cat

 

Слайд 17

Quantum parallelelism

Quantum parallelelism

Слайд 18

Parallel quantum algorithm

Parallel quantum algorithm

Слайд 19

Universal gate set Operation Gates: NOT Hadamar XOR

Universal gate set

Operation
Gates:
NOT
Hadamar
XOR

Слайд 20

Principles of quantum computation Computation: unitary evolution Readout: measurement Avoiding decoherence

Principles of quantum computation

Computation: unitary evolution

Readout: measurement

Avoiding decoherence

Слайд 21

Di Vincenzo criteria Selectivity (addressing each qubit) High sensitivity = Good

Di Vincenzo criteria

Selectivity (addressing each qubit)
High sensitivity = Good control
Large decoherence

time (τdecoh/ τgate >104)
Readout ⇒ Measurability
Scalability (>100 qubits)
Слайд 22

Quantum computer by Cirac & Zoller (1995)

Quantum computer by Cirac & Zoller (1995)

Слайд 23

Ions in trap

Ions in trap

Слайд 24

Qubit: micro or macro? Measurement duration: Limitations: Energy splitting: Qubit =

Qubit: micro or macro?

Measurement duration:
Limitations:
Energy splitting:
Qubit = 1 electron

spin:
Measured
Min splitting
Min field
Impossible! We need macrospin!

k~10-3 – 10-7

~10 4 T

Слайд 25

Superconductors: macroatoms Qubit: charge or phase Control: magnetic flux Readout: SQUID,

Superconductors: macroatoms

Qubit: charge or phase
Control: magnetic flux
Readout: SQUID, SET
T=10 mK
1 qubit

gate — ns
Qubit size 1 mcm

Josephson junction

Слайд 26

Superconducting qubit: overcoming decoherence Shnyrkov et al, 2007 τdecoh→ s, T

Superconducting qubit: overcoming decoherence

Shnyrkov et al, 2007
τdecoh→ s, T → 1

K

(Shnyrkov, Mooji, D-wave Systems)

Слайд 27

Flux qubit: theory

Flux qubit: theory

Слайд 28

… & experiment qubit gate

… & experiment

qubit

gate

Слайд 29

V-I SQUID (V.Shnyrkov, G. Tsoi, 1990) quantum classic

V-I SQUID (V.Shnyrkov, G. Tsoi, 1990)

quantum

classic

Слайд 30

ScS-контакт, m= 26, C= 8 pF, βL= 3,83 Quantum coherence

ScS-контакт, m= 26, C= 8 pF, βL= 3,83

Quantum coherence

Слайд 31

Single-qubit gate

Single-qubit gate

Слайд 32

Experimental results for the charge-phase qubit placed in the region of

Experimental results for the charge-phase qubit placed in the region of

the maximum electric field at continuous microwave irradiation with ω0=7.27 GHz. Set of the curves of the voltage-current phase shift αT (Φe/Φ0) in the tank circuit. (V. Shnyrkov, D. Born, A. Soroka, W. Krech 2003)

Rabi oscillations

Слайд 33

2-qubit gate (DiVincenzo et al, IBM qubit)

2-qubit gate (DiVincenzo et al, IBM qubit)

Слайд 34

Find the period: Shor’s algorithm

Find the period: Shor’s algorithm

Слайд 35

Hidden symmetry ay=0 - amplification; ay=1 - depression

Hidden symmetry

ay=0 - amplification; ay=1 - depression

Слайд 36

Classic algorithm : 2n =N Quantum algorithm: 2n/2 = √N Unsorted database Merlin Database search

Classic algorithm : 2n =N
Quantum algorithm: 2n/2 = √N
Unsorted database
Merlin

Database search

Слайд 37

Grover’ algorithm Input Flip (Merlin) Mirroring

Grover’ algorithm

Input
Flip (Merlin)
Mirroring

 

 

Слайд 38

Grover’ algorithm: experiment

Grover’ algorithm: experiment

Слайд 39

4-level system QIR=Quantum Intermediate Representation QASM=Quantum Assembly Language QPOL=Quantum Physical Operations Language QCC=Quantum Computer Compiler Architecture

4-level system

QIR=Quantum Intermediate Representation
QASM=Quantum Assembly Language
QPOL=Quantum Physical Operations Language
QCC=Quantum Computer Compiler

Architecture

Слайд 40

Quantum computer: challenges Decoherence (state instability) Scaling (few number of qubits)

Quantum computer: challenges

Decoherence (state instability)
Scaling (few number of qubits)
Input-output control
Extreme

conditions (T=10 mK, …)
New math algorithms development
Consumer friendly implementation
Weak measurement
Слайд 41

Quantum abyss # кубитов ~5 # операций Есть Надо >1000 >109

Quantum abyss

# кубитов

~5

<100

# операций

Есть

Надо

>1000

>109

Шум ↓

Технологии ↑

Алгоритмы ↑

Ошибки ↓

?

Слайд 42

When, Where, Who & hoW? 2 qb — 1999, 7 qb

When, Where, Who & hoW?

2 qb — 1999, 7 qb —

2001, 16 qb — 2007,
NP — 2012,1000 qb —2015, on-table -- 20xx?
~ 1000 experimental groups over the world
Physics, math, computer science, engineering?
Semi- or super-conductors or?
Слайд 43

Alumni Vadym Kliuchnikov Post doc researcher @ Microsoft Research http://research.microsoft.com/en-us/people/vadym/ Sergii

Alumni

Vadym Kliuchnikov
Post doc researcher @ Microsoft Research
http://research.microsoft.com/en-us/people/vadym/

Sergii Strelchuk
Junior Research Fellow

@ Centre for Quantum Information and Foundations, UC
http://www.qi.damtp.cam.ac.uk/node/72