Инфракрасная спектроскопия

Содержание

Слайд 2

Слайд 3

Экспериментальным результатом в ИК-спектроскопии является инфракрасный спектр — функция интенсивности пропущенного

Экспериментальным результатом в ИК-спектроскопии является инфракрасный спектр — функция интенсивности пропущенного инфракрасного излучения

от его частоты. Обычно инфракрасный спектр содержит ряд полос поглощения, по положению и относительной интенсивности которых делается вывод о строении изучаемого образца. Такой подход стал возможен благодаря большому количеству накопленной экспериментальной информации: существуют специальные таблицы, связывающие частоты поглощения с наличием в образце определённых молекулярных фрагментов. Созданы также базы ИК-спектров некоторых классов соединений, которые позволяют автоматически сравнивать спектр неизвестного анализируемого вещества с уже известными и таким образом идентифицировать это вещество.
Слайд 4

Теромпара устройство, применяемое в промышленности, научных исследованиях, медицине, в системах автоматики.

Теромпара

устройство, применяемое в промышленности, научных исследованиях, медицине, в системах автоматики. Применяется, в

основном, для измерения температуры. Для измерения разности температур зон, ни в одной из которых не находится вторичный преобразователь (измеритель термо-ЭДС), удобно использовать дифференциальную термопару: две одинаковые термопары, соединенные навстречу друг другу. Каждая из них измеряет перепад температур между своим рабочим спаем и условным спаем, образованным концами термопар, подключёнными к клеммам вторичного преобразователя, но вторичный преобразователь измеряет разность их сигналов, таким образом, две термопары вместе измеряют перепад температур между своими рабочими спаями.
Слайд 5

Принцип действия Принцип действия основан на эффекте Зеебека или, иначе, термоэлектрическом

Принцип действия

Принцип действия основан на эффекте Зеебека или, иначе, термоэлектрическом эффекте. Между соединёнными

проводниками имеется контактная разность потенциалов; если стыки связанных в кольцо проводников находятся при одинаковой температуре, сумма таких разностей потенциалов равна нулю. Когда же стыки находятся при разных температурах, разность потенциалов между ними зависит от разности температур. Коэффициент пропорциональности в этой зависимости называют коэффициентом термо-ЭДС. У разных металлов коэффициент термо-ЭДС разный и, соответственно, разность потенциалов, возникающая между концами разных проводников, будет различная. Помещая спай из металлов с отличными от нуля коэффициентами термо-ЭДС в среду с температурой Т1, мы получим напряжение между противоположными контактами, находящимися при другой температуре Т2, которое будет пропорционально разности температур Т1 и Т2.
Слайд 6

Схема термопары типа К. При температуре спая проволок из хромеля и

Схема термопары типа К. При температуре спая проволок из хромеля и алюмеля равной 300 °C

и температуре свободных концов 0 °C развивает термо-ЭДС 12,2 мВ
Слайд 7

Слайд 8

Болометр тепловой приёмник излучения, чаще всего оптического (а именно — ИК-диапазона).

Болометр

тепловой приёмник излучения, чаще всего оптического (а именно — ИК-диапазона). Принцип действия болометра основан на

изменении электрического сопротивления термочувствительного элемента вследствие нагревания под воздействием поглощаемого потока электромагнитной энергии. Основной компонент болометра — очень тонкая пластинка (например, из платины или другого проводящего материала), зачернённая для лучшего поглощения излучения. Из-за своей малой толщины пластинка под действием излучения быстро нагревается и её сопротивление повышается. Для измерения малых отклонений сопротивления пластинки её включают в мостовую схему, которую балансируют при отсутствии засветки. Металлические болометры часто подсоединяют через трансформаторный вход, так как у них очень малое собственное сопротивление.
Слайд 9

Болометр чувствителен ко всему спектру излучения. Но применяют его в основном

Болометр чувствителен ко всему спектру излучения. Но применяют его в основном

в астрономии для регистрации излучения с субмиллиметровой длиной волны (промежуточное между СВЧ и инфракрасным): для этого диапазона болометр — самый чувствительный датчик. Источником теплового излучения может быть свет звёзд или Солнца, прошедший через спектрометр и разложенный на тысячи спектральных линий, энергия в каждой из которых очень мала.
Полупроводниковые болометры применяются, например, в системах ориентации, для дистанционного измерения температуры объектов.