Презентация по физике "Виды лазеров" - скачать

Содержание

Слайд 2

Лазер - источник электромагнитного излучения видимого, инфракрасного и ультрафиолетового диапазонов, основанный

Лазер - источник электромагнитного излучения видимого, инфракрасного и ультрафиолетового диапазонов, основанный

на вынужденном излучении атомов и молекул. Слово "лазер" составлено из начальных букв слов английской фразы "Light Amplification by Stimulated Emission of Radiation", что означает "усиление света в результате вынужденного излучения".
Слайд 3

Лазерные источники света обладают рядом существенных преимуществ по сравнению с другими

Лазерные источники света обладают рядом существенных преимуществ по сравнению с другими

источниками света:
1. Лазеры способны создавать пучки света с очень малым углом расхождения (около 10-5 рад). На Луне такой пучок, испущенный с Земли, дает пятно диаметром 3 км.
2. Свет лазера обладает исключительной монохроматичностью. В отличие от обычных источников света, атомы которых излучают свет не­зависимо друг от друга, в лазерах атомы излучают свет согласованно. Поэтому фаза волны не испытывает нерегулярных изменений.
3. Лазеры являются самыми мощными источниками света. В узком интервале спектра кратковременно (в течение промежутка времени продолжительностью порядка 10-13 с) у некоторых типов лазеров достигается мощность излучения 1017 Вт/см2, в то время как мощность излучения Солнца равна толь­ко 7∙103 Вт/см2, причем суммарно по всему спектру. На узкий же интервал Δλ=10-6 см (ширина спектральной линии лазера) приходится у Солнца всего лишь 0,2 Вт/см2. Напряженность электрического поля в электромагнитной волне, излучаемой лазером, превышает напряженность поля внутри атома.

Свойства лазерного излучения.

Слайд 4

На выходе усилителя появляется лазерное излучение, когда на его вход (а

На выходе усилителя появляется лазерное излучение, когда на его вход

(а сам он уже находит­ся в возбужденном состоянии) поступает незначительный сигнал на частоте перехода. Именно этот сигнал стимулирует возбужденные частицы к отдаче энергии. Происходит лавинообразное усиление. Таким образом – на входе слабое излучение, на выходе – усиленное.
С генератором дело обстоит иначе. На его вход излучение на частоте перехода уже не подают, а возбуждают и, более того, перевозбуждают активное вещество. Причем если активное вещество находится в перевозбуждённом состоянии, то существенно растет вероятность самопроизвольного перехода одной или нескольких частиц с верхнего уровня на нижний. Это приводит к возникновению стимулированного излучения.

Два типа лазеров: усилители и генераторы

Слайд 5

Классификация лазеров *Газовые *Твердотельные *Жидкостные *Полупроводниковые *Химические *Ультрафиолетовые Применение

Классификация лазеров

*Газовые

*Твердотельные

*Жидкостные

*Полупроводниковые

*Химические

*Ультрафиолетовые

Применение

Слайд 6

Газовый лазер Для таких лазеров в качестве активного вещества используют либо

Газовый лазер

Для таких лазеров в качестве активного вещества используют либо

смесь газов, либо вещество, находящееся в парообразном состоянии. Газовая среда облегчает получение непрерывного стимулированного излучения, поскольку для перевода вещества в возбужденное состояние требуется меньшая энергия. Впервые в качестве активного вещества применялась смесь гелия и неона.


He+ Ne+
25
20 2
19 3
4
He Ne
0 1 1
Схема энергетических уровней гелий-неоновой смеси.

Слайд 7

Твердотельные лазеры Состоит из пяти блоков: излучающей головки, блока конденсаторов, выпрямительного

Твердотельные лазеры

Состоит из пяти блоков: излучающей головки, блока конденсаторов, выпрямительного

блока, блока поджига, пульта управления. Излучающая головка преобразует электрическую энергию сначала в световую, а затем и в монохроматическое лазерное излучение. Блок конденсаторов обеспечивает накопление энергии, а выпрямительный блок служит для преобразования переменного тока в постоянный, которым и заряжаются конденсаторы. Блок поджига вырабатывает очень высокое напряжение, которым осуществляется первоначальный пробой газа в лампах-вспышках. Поскольку первый лазер был сделан при использовании в качестве активного вещества рубинового стержня, то рассмотрим его устройство. Излучающая головка рубинового лазера состояла из держателя рубина, осевой втулки, двух ламп накачки и цилиндрического рефлектора. Держатели рубина сменные и предназначены под рубиновые стержни различных размеров и диаметров.
Используемый в приборе рубин представлял собой окись алюминия, в которой часть атомов алюминия замещена атомами хрома. Количеством хрома определяется цвет рубина, так, бледно-розовый рубин содержит 0,05% хрома, красный – 0,5%.
Слайд 8

Жидкостный лазер В этих лазерах рабочей средой служат жидкие диэлектрики с

Жидкостный лазер

В этих лазерах рабочей средой служат жидкие диэлектрики с

примесными рабочими атомами. Оказалось, что, растворяя редкоземельные элементы в некоторых жидкостях. можно получить структуру энергетических уровней, очень сходную со структурой уровней примесных атомов в твердых диэлектриках. Поэтому принцип работы жидкостных лазеров тот же, что и твердотельных. Преимущества жидкостных лазеров очевидны: во-первых. не нужно ни варить стекло высокого качества, ни растить були для кристаллов. Во-вторых, жидкостью можно заполнять любой объем, а это облегчает охлаждение активного вещества путем циркуляции самой жидкости в приборе.
Был создан и исследован жидкостный лазер с активным веществом, которое излучало в диапазоне 0,5...0,58 мкм (зеленая часть спектра). Это излучение хорошо проникает в воду на большие глубины, поэтому такие генераторы представляют интерес для создания подводных локаторов.
Слайд 9

Полупроводниковый лазер Согласно квантовой теории электроны в полупроводнике могут занимать две

Полупроводниковый лазер

Согласно квантовой теории электроны в полупроводнике могут занимать две

широкие энергетические полосы. Нижняя представляет собой валентную зону, а верхняя – зону проводимости. В нормальном чистом полупроводнике при низкой температуре все электроны связаны и занимают энергетический уровень, расположенный в пределах валентной зоны. Если на полупроводник подействовать электрическим током или световыми импульсами, то часть электронов перейдет в зону проводимости. В результате перехода в валентной зоне окажутся свободные места, которые в физике называют “дырками”. Эти дырки играют роль положительного заряда. Произойдёт перераспределение электронов между уровнями валентной зоны и зоны проводимости, и можно говорить, в определенном смысле, о перенаселенности верхней энергетической зоны.

Схема энергетических уровней полупроводникового лазера.

E
Зоны
Проводимости Е-заполнение
Электроны
Е-запрещение
Дырки
Е-незаполнение
Валентная зона

Слайд 10

Химический лазер Химическим лазерам приписывают практическое использование в самом ближайшем будущем.

Химический лазер

Химическим лазерам приписывают практическое использование в самом ближайшем будущем.

Они работают без электрического питания. Для этого потоки химических реагентов должны перемещаться и реагировать. Инверсия населенностей уровней энергии возникает при возбуждении энергией, выделяющейся в химической реакции. Для химического лазера имеется принципиальная возможность работы без внешнего источника электрической энергии. Вся необходимая энергия может быть по­лучена за счет химической реакции. В одном из наи­более перспективных химических лазеров основные про­цессы могут быть представлены следующей серией реакции
F + H2 → HF* + Н;
H + F2 → HF* + F;
HF* → HF + hν.
Слайд 11

Ультрафиолетовый лазер Лазеры, излучающие в видимом и инфракрасном диапазонах электромагнитного спектра.

Ультрафиолетовый лазер

Лазеры, излучающие в видимом и инфракрасном диапазонах электромагнитного спектра.

Важное значение имеют ультрафиолетовый и рентгеновский участки диапазона спектра частот. Однако первый освоен крайне слабо. Создана часть приборов на аргоне, криптоне и азоте. Они излучают в диапазоне волн 0,29...0,33 мкм и имеют очень незначительную мощность. Лишь работы последнего времени показали, что могут быть созданы и лазеры высокой мощности. Для этого пригодны так называемые эксимерные лазеры на аргоне, криптоне и ксеноне.
Слайд 12

Применение лазера : В последнее время получила распространение еще одна важная

Применение лазера :

В последнее время получила распространение еще одна важная

область применения лазеров – лазерная технология, с помощью которой обеспечивается резка, сварка, легирование, скрайбирование металлов и обра­ботка интегральных микросхем.
Значительный эффект получен и при использовании лазеров в медицине. Был создан лазерный скальпель. Возникла лазерная микрохирургия глаза.
Лазеры применяются в стоматологии, нейрохирургии, при операциях на сердце и диагностике заболеваний. Ультрафиолетовые лазеры применяют для раннего обнаружения раковых опухолей.
Имеются определенные успехи и по использованию лазеров в агропроме.
В пищевой промышленности исследуются возможности применения лазеров для улучшения качества хлебо­продуктов, ускорения производства безалкогольных напитков с улучшенными свойствами, сохранения качества мяса и мясопродуктов. Даже такие работы, как предварительная обработка режущего инструмента и подшипников в аппаратах пищевого машиностроения, дает значительное увеличение срока службы этих устройств.