Secondary structures

Содержание

Слайд 2

coil r = ________ L 1+cosα 1– cosα = (Mr)•r =

coil


r = ________ L

1+cosα

1– cosα

= (Mr)•r = LM•r

|h| ~ M1/2
V ~ M3/2


r1

L

L

Слайд 3

Linus Carl Pauling (1901-94) — Nobel Prizes: 1954, 62 Werner Kuhn

Linus Carl Pauling (1901-94)
— Nobel Prizes: 1954, 62

Werner Kuhn (1899 -

1963)

Robert Brainard Corey 
(1897 –1971)

Herman Russell Branson 
(1914 –1995)

Random coil:

α-helices and β-sheets:

Слайд 4

Main secondary structures

Main secondary structures

Слайд 5

H1 NMR spectroscopy (cross-peaks) Experimental study of secondary structure X-ray crystallography

H1 NMR
spectroscopy
(cross-peaks)

Experimental
study of secondary structure
X-ray crystallography

Слайд 6

Far UV CD spectra (peptide groups) IR spectra (“amid I”, C=O

Far UV CD spectra
(peptide groups)

IR spectra
(“amid I”, C=O bond)

Experimental study of

secondary structure
Слайд 7

Helices: Right and Left H-bonds

Helices:
Right and Left

H-bonds

Слайд 8

Right α-helix Right 310-helix

Right
α-helix

Right
310-helix

Слайд 9

Слайд 10

ALA, etc. GLY only

ALA, etc. GLY only

Слайд 11

Слайд 12

β↑↑, twisted β↓↑, twisted

β↑↑,
twisted

β↓↑,
twisted

Слайд 13

Mirror-asymmetric amino acids – mirror-asymmetric twist of β-sheets

Mirror-asymmetric amino acids –
mirror-asymmetric
twist of β-sheets

Слайд 14

β-turns β-bulge

β-turns

β-bulge

Слайд 15

collagen triple helix

collagen triple helix

Слайд 16

Secondary structure transitions We may consider only potential energy, etc.: E

Secondary structure transitions
We may consider
only potential energy, etc.:
E ⇒ ECOORD
M

⇒ MCOORD
S(E) ⇒ SCOORD(ECOORD )
F(E) ⇒ FCOORD , etc.

Separation of potential energy
in classic (non-quantum) mechanics:
E = ECOORD + EKIN; EKIN=Σmv2/2 - does not depend on coordinates
S = SCOORD + SKIN

Слайд 17

α-helix homo-polypeptide: ΔFα = Fα - Fcoil = (n-2)fH - nTSα

α-helix

homo-polypeptide:
ΔFα = Fα - Fcoil = (n-2)fH - nTSα =

= -2fH + n×(fH - TSα)
||==========|| ||========================||
fINIT fEL
fEL: elongation ( ≈ 0) :
≈ -0.5⋅kBT Ala --- ≈ +1.5⋅kBT Gly
s = exp(-fEL/kBT): s = 2 – 0.2
fINIT =-2fH: initiation (>>kBT)
σ = exp(-fINIT/kBT): σ<<1 (~0.001)
Слайд 18

α-helix homo-polypeptide: ΔFα = Fα - Fcoil = (n-2)fH - nTSα

α-helix

homo-polypeptide:
ΔFα = Fα - Fcoil = (n-2)fH - nTSα =

= -2fH + n×(fH - TSα)
||==========|| ||========================||
fINIT fEL
fEL: elongation ( ≈ 0) :
≈ -0.5⋅kBT Ala --- ≈ +1.5⋅kBT Gly
s = exp(-fEL/kBT): s = 2 – 0.2
fINIT =-2fH: initiation (>>kBT)
σ = exp(-fINIT /kBT): σ<<1 (~0.001)
Слайд 19

Average lengths n0 of helix and coil regions at mid-transition (when

Average lengths n0 of helix and coil regions at
mid-transition (when

fEL=0,
fINIT>>kBT):

N

n

Eα = fINIT + n×fEL

positional entropy
n is small: fINIT -T•kBln[n×n] > 0: insertion of coil is unfavorable
n is large: fINIT -T•kBln[n×n] < 0: insertion of coil is favorable
EQUILIBRIUM: ΔG = 0:
fINIT -T•2kBln[n0] = 0 ⇒ n0 ≈ exp(+fINIT/2kBT) = σ-1/2 >> 1

σ = exp(-fINIT/kBT) << 1

Слайд 20

Width of helix-coil transition When fEL changes: IF n0 ×fEL IF

Width
of helix-coil transition
When fEL changes:
IF n0 ×fEL << -

kBT, i.e., fEL/kBT << - 1/n0: stable helix
IF n0 ×fEL >> +kBT; i.e., fEL/kBT >> + 1/n0: unstable helix,
stable coil

~n0

n0 ≅ σ-1/2 ≈ 30

Transition width: Δ[ fEL/kBT ] ~ 4/n0 = 4σ1/2

fEL=0 if %α = 50%
for very long chain
n0: %α → 0
when chain is
shorter than n0

~n0

Слайд 21

TIME of coil-helix transition Barrier for initiation: ΔF# = fINIT; Time

TIME of coil-helix transition
Barrier for initiation:
ΔF# = fINIT;
Time to initiate helix

in given place:
t1 = τ × exp(+ΔF#/kBT) = τ × σ -1= τn02 τ ~ 1–10 ns
Time to initiate helix in any of n0 places:
tINIT_H = n0-1 × t1 = τn0 ≡ τ × σ -1/2 ~100 ns
To extend helix to n0 residues:
tEL_H = n0 × τ ≡ τ × σ -1/2 ~100 ns
tHELIX ~ 200 ns

~n0

/

n0 = σ-1/2

Слайд 22

TIME of coil – stable β-hairpin transition Barrier for initiation: ΔF#

TIME of coil – stable β-hairpin transition
Barrier for initiation:
ΔF# = fTURN

≈ fINIT_α;
Time to initiate β-hairpin
with turn in the middle of the chain:
t1 ≈ τ × exp(+ΔF#/kBT) = τ × n02 ~ 3000 ns
Time to extend β-hairpin to n residues:
tEL_β-HAIRPIN ≈ n × τ ~ 100 ns
tβ-HAIRPIN ~ 3000 ns

/

n

fTURN

1

Слайд 23

TIME of coil – β-sheet transition (when hairpin is unstable) fβ

TIME of coil – β-sheet transition (when hairpin is unstable)


fTURN

fEDGE+fβ

fβN

+ fTURN < 0 ⇒ Nmin = fTURN/(-fβ)
F# = fTURN +2Nmin(fEDGE+fβ) + fTURN = 2 fTURN fEDGE /(-fβ)

F#

fβ < 0
fEDGE+ fβ > 0

H-phil.: fβ = -0.3 – +0.3 kBT;
H-phob.: fβ ≈ -1 – -0.5 kBT

Слайд 24

TIME of coil – β-sheet transition fβ fTURN fEDGE+fβ F# F#

TIME of coil – β-sheet transition


fTURN

fEDGE+fβ

F#

F# = 2 fTURN fEDGE

/(-fβ) → ∞ when (-fβ) → 0

Time to initiate β-sheet folding:
t1 = τ × exp(+ΔF#/kBT)
→ ∞ when (-fβ) → 0
!! Fopt(M#) = 2 fTURN fEDGE /(-fβ) - fTURN

fβ < 0
fEDGE > -fβ

Слайд 25

The End

The End