Пневматический привод в строительных машинах

Содержание

Слайд 2

Любой объект, в котором используется газообразное вещество, можно отнести к газовым

Любой объект, в котором используется газообразное вещество, можно отнести к газовым

системам. Поскольку наиболее доступным газом является воздух, состоящий из смеси множества газов, то его широкое применение для выполнения различных процессов обусловлено самой природой. В переводе с греческого pneumatikos - воздушный, чем и объясняется этимологическое происхождение названия пневматические системы.
Слайд 3

По наличию и причине движения газа все системы можно разделить на

По наличию и причине движения газа все системы можно разделить на

три группы

системы с естественной конвекцией газа
системы с замкнутыми камерами, не сообщающимися с атмосферой
системы, где используется энергия предварительно сжатого газа

Слайд 4

Системы с естественной конвекцией газа К первой группе относят системы с

Системы с естественной конвекцией газа

К первой группе относят системы с

естественной конвекцией (циркуляцией) газа (чаще всего воздуха), где движение и его направление обусловлено градиентами температуры и плотности природного характера, например, атмосферная оболочка планеты, вентиляционные системы помещений, горных выработок, газоходов и т.п.
Слайд 5

Системы с замкнутыми камерами, не сообщающимися с атмосферой Ко второй группе

Системы с замкнутыми камерами, не сообщающимися с атмосферой

Ко второй группе относят

системы с замкнутыми камерами, не сообщающимися с атмосферой, в которых может изменяться состояние газа вследствие изменения температуры, объема камеры, наддува или отсасывания газа. К ним относятся различные аккумулирующие емкости (пневмобаллоны), пневматические тормозные устройства (пневмобуферы), всевозможные эластичные надувные устройства, пневмогидравлические системы топливных баков летательных аппаратов и многие другие. Примером устройств с использованием вакуума в замкнутой камере могут быть пневмозахваты (пневмоприсоски), которые наиболее эффективны для перемещения штучных листовых изделий (бумага, металл, пластмасса и т.п.) в условиях автоматизированного и роботизированного производства.
Слайд 6

Системы, где используется энергия предварительно сжатого газа К третьей группе следует

Системы, где используется энергия предварительно сжатого газа

К третьей группе следует относить

такие системы, где используется энергия предварительно сжатого газа для выполнения различных работ. В таких системах газ перемещается по магистралям с относительно большой скоростью и обладает значительным запасом энергии. Они могут быть циркуляционными (замкнутыми) и бесциркуляционными
Слайд 7

В циркуляционных системах отработавший газ возвращается по магистралям к нагнетателю для

В циркуляционных системах отработавший газ возвращается по магистралям к нагнетателю для

повторного использования (как в гидроприводе). Применение систем весьма специфично, например, когда недопустимы утечки газа в окружающее пространство или невозможно применение воздуха из-за его окислительных свойств. Примеры таких систем можно найти в криогенной технике, где в качестве энергоносителя используются агрессивные, токсичные газы или летучие жидкости (аммиак, пропан, сероводород, гелий, фреоны и др.).
В бесциркуляционных системах газ может быть использован потребителем как химический реагент (например, в сварочном производстве, в химической промышленности) или как источник пневматической энергии. В последнем случае в качестве энергоносителя обычно служит воздух.
Слайд 8

Основные направления применения сжатого воздуха К первому направлению относятся технологические процессы,

Основные направления применения сжатого воздуха

К первому направлению относятся технологические процессы,

где воздух выполняет непосредственно операции обдувки, осушки, распыления, охлаждения, вентиляции, очистки и т.п. Очень широкое распространение получили системы пневмотранспортирования по трубопроводам. Штучные и кусковые материалы транспортируются в специальных сосудах (капсулах), а пылевидные в смеси с воздухом перемещаются на относительно большие расстояния аналогично текучим веществам.
Второе направление - использование сжатого воздуха в пневматических системах управления (ПСУ) для автоматического управления технологическими процессами (системы пневмоавтоматики). Благодаря высокой надежности они широко используются для циклового программного управления различными машинами, роботами в крупносерийном производстве, в системах управления движением мобильных объектов.
Третьим направлением применения пневмоэнергии, наиболее масштабным по мощности, является пневматический привод, который в научном плане является одним из разделов обшей механики машин.
Слайд 9

Особенности пневматического привода Область и масштабы применения пневматического привода зависят от

Особенности пневматического привода
Область и масштабы применения пневматического привода зависят от особенностей

свойств воздуха. В отличие от жидкостей, применяемых в гидроприводах, воздух, как и все газы, обладает высокой сжимаемостью и малой плотностью в исходном атмосферном состоянии (около 1,25 кг/м 3), значительно меньшей вязкостью и большей текучестью, причем его вязкость существенно возрастает при повышении температуры и давления. Отсутствие смазочных свойств воздуха и наличие некоторого количества водяного пара, который при интенсивных термодинамических процессах в изменяющихся объемах рабочих камер пневмомашин может конденсироваться на их рабочих поверхностях, препятствует использованию воздуха без придания ему дополнительных смазочных свойств и влагопонижения. В связи с этим в пневмоприводах имеется потребность кондиционирования воздуха, т.е. придания ему свойств, обеспечивающих работоспособность и продляющих срок службы элементов привода.
Слайд 10

Достоинства пневматического привода 1. Простота конструкции и технического обслуживания. Изготовление деталей

Достоинства пневматического привода

1. Простота конструкции и технического обслуживания. Изготовление деталей пневмомашин

и пневмоаппаратов не требует такой высокой точности изготовления и герметизации соединений, как в гидроприводе
2. Пожаро- и взрывобезопасность. Благодаря этому достоинству пневмопривод не имеет конкурентов для механизации работ в условиях, опасных по воспламенению и взрыву газа и пыли
3. Надежность работы в широком диапазоне температур, в условиях пыльной и влажной окружающей среды. Где гидро- и электропривод требуют значительно больших затрат на эксплуатацию
4. Значительно больший срок службы, чем гидро- и электропривода.
5. Высокое быстродействие, т.е. реализуемые скорости рабочих движений, обеспечиваемых высокими скоростями движения воздуха.
6. Возможность передачи пневмоэнергии на относительно большие расстояния по магистральным трубопроводам и снабжение сжатым воздухом многих потребителей.
7. Отсутствие необходимости в защитных устройствах от перегрузки давлением у потребителей.
8. Безопасность для обслуживающего персонала при соблюдении общих правил, исключающих механический травматизм. В гидро- и электроприводах возможно поражение электрическим током или жидкостью при нарушении изоляции или разгерметизации трубопроводов.
9. Улучшение проветривания рабочего пространства за счет отработанного воздуха.
10. Нечувствительность к радиационному и электромагнитному излучению.
Слайд 11

Недостатки пневматического привода 1. Высокая стоимость пневмоэнергии. Если гидро- и электропривод

Недостатки пневматического привода

1. Высокая стоимость пневмоэнергии. Если гидро- и электропривод имеют

КПД, соответственно, около 70 % и 90 %, то КПД пневмопривода обычно 5-15 % и очень редко до 30 %. Во многих случаях КПД может быть 1 % и менее. По этой причине пневмопривод не применяется в машинах с длительным режимом работы и большой мощности, кроме условий, исключающих применение электроэнергии.
2. Относительно большой вес и габариты пневмомашин из-за низкого рабочего давления. Если удельный вес гидромашин, приходящийся на единицу мощности, в 5-10 раз меньше веса электромашин, то пневмомашины имеют примерно такой же вес и габариты, как последние.
3. Трудность обеспечения стабильной скорости движения выходного звена при переменной внешней нагрузке и его фиксации в промежуточном положении. Вместе с тем мягкие механические характеристики пневмопривода в некоторых случаях являются и его достоинством.
4. Высокий уровень шума, достигающий 95-130 дБ при отсутствии средств для его снижения. Наиболее шумными являются поршневые компрессоры и пневмодвигатели, особенно пневмомолоты и другие механизмы ударно- циклического действия. Наиболее шумные гидроприводы (к ним относятся приводы с шестеренными машинами) создают шум на уровне 85-104 дБ, а обычно уровень шума значительно ниже, примерно как у электромашин, что позволяет работать без специальных средств шумопонижения.
5. Малая скорость передачи сигнала (управляющего импульса), что приводит к запаздыванию выполнения операций. Скорость прохождения сигнала равна скорости звука и, в зависимости от давления воздуха, составляет примерно от 150 до 360 м/с. В гидроприводе и электроприводе, соответственно, около 1000 и 300 000 м/с.
Перечисленные недостатки могут быть устранены применением комбинированных пневмоэлектрических или пневмогидравлических приводов.