Тепломассообмен. Теплопроводность при наличии внутренних источников теплоты

Содержание

Слайд 2

А) Однородная пластина Пограничные слои

А) Однородная пластина
Пограничные
слои

Слайд 3

Дифференциальное уравнение теплопроводности При бесконечная пластина. В стационарном процессе: Найти: Дифференциальное

Дифференциальное уравнение теплопроводности

При бесконечная пластина.
В стационарном процессе:


Найти:
Дифференциальное
уравнение теплопроводности: (1)
Для стационарного процесса: ,
тогда (2) где
оператор Лапласа, тогда после деления (2) на
дифференциальное уравнение теплопроводности
в бесконечной пластине: (3)


Слайд 4

Граничные условия Условия теплоотдачи одинаковы с обеих сторон пластины, поэтому температурное

Граничные условия

Условия теплоотдачи одинаковы с обеих сторон пластины,
поэтому температурное

поле симметричное, а тепловыделения
в обеих половинах пластины одинаковы, то есть можно рас-
сматривать только ее правую
половину. Тогда граничные
условия будут: (4)
Интегрируем (3): (5)
разделяем переменные:
После второго интегрирования
имеем уравнение параболы: . (6)
Слайд 5

Константы интегрирования Константы интегрирования находятся из граничных условий (4) и уравнения

Константы интегрирования

Константы интегрирования находятся из граничных
условий (4) и уравнения

(5) при:
, (7) . (8)
Подставляем (8) в (4): (9)
После сокращения на λ имеем: . (10)
Подставляем (10) в (6) при и с учетом, что
получаем: . (11)
Приравнивая (10) и (11),
имеем: , откуда: (12)


Слайд 6

Тепловой поток и температуры Подставим константы интегрирования (7) и (12) в

Тепловой поток и температуры

Подставим константы интегрирования (7) и (12) в

(6):
(13) уравнение параболы.
Тепловой поток, отдаваемый от правой половины пластины:
(14) то есть:
Если температура стенки известна или вычислена
уравнению (10), то есть заданы граничные условия I рода:
(15) тогда при
(16) - температура в центре.
Слайд 7

Однородный цилиндр Пограничные слои

Однородный цилиндр
Пограничные
слои

Слайд 8

Дифференциальное уравнение теплопроводности для цилиндра Для бесконечного цилиндрического стержня . При

Дифференциальное уравнение теплопроводности для цилиндра

Для бесконечного цилиндрического стержня .
При стационарном

режиме


Найти
Условия теплоотдачи со всех сторон одинаковы (симметрич-
ная задача), то есть можно рассматривать только правую
половину цилиндра. Дифференциальное уравнение теплопро-
водности: (1) Для стационар-
ного процесса:
тогда: (2) где оператор Лапласа в
полярных (цилиндрических)
координатах: (3)

Слайд 9

Граничные условия В бесконечном цилиндре температура изменяется только по по радиусу,

Граничные условия

В бесконечном цилиндре температура изменяется только по
по радиусу,

то есть: после деления
(2) на:
получим дифференциальное уравнение теплопроводности
для цилиндра при стационарном режиме: (4)
Граничные условия: при (5)
Найти:
После двойного интегрирования (4) (6)
имеем:
Слайд 10

Конвективная теплоотдача от цилиндра к жидкости Определив константы интегрирования и подставив

Конвективная теплоотдача от цилиндра к жидкости

Определив константы интегрирования и подставив

их в (6),
имеем: (7) - это уравнение
параболы.
Температура на оси
цилиндра находится при (8)
и на стенке цилиндра
– при (9)
Если заданы граничные условия I рода, то есть известна ,
тогда: (10) Удельный тепловой поток, Вт/м²
находится из (9) и тепло-
та, отданная от цилиндра к окружающей его жидкости, Вт:
(11) . (12)




Слайд 11

Нестационарная теплопроводность Температуры: - окружающей среды (жидкости); - поверхности тела (стенки); - в центре тела.

Нестационарная теплопроводность

Температуры:
- окружающей
среды (жидкости);
- поверхности
тела (стенки);
-

в центре тела.
Слайд 12

Дифференциальное уравнение теплопроводности Нестационарная теплопроводность имеет место при нагревании и охлаждении

Дифференциальное уравнение теплопроводности

Нестационарная теплопроводность имеет место при
нагревании и

охлаждении заготовок, пуске и отключении
теплоэнергетических установок, обжиге кирпича,
вулканизации резины. На слайде показан нагрев твердого
тела в среде с температурой .
Процесс описывается дифференциальным уравнением тепло-
проводности без внутренних источников теплоты
(1) Условия однозначности:
● геометрические; ● физические;
● начальные: при
● граничные условия III рода:
Решение заключается в нахождении функции:
Слайд 13

Охлаждение пластины

Охлаждение пластины

Слайд 14

Начальные и граничные условия Рассматриваем охлаждение (нагревание) пластины при: Подставляем избыточную

Начальные и граничные условия

Рассматриваем охлаждение (нагревание) пластины при:
Подставляем избыточную

температуру пластины
в дифференциальное уравнение (1) и граничные условия.
Для бесконечной пластины : .
Тогда дифференциальное
уравнение примет вид: (2)
Начальные условия: при (3)
При :
симметричная задача, тогда
граничные условия III рода: (4)


Слайд 15

Разделение переменных Решение дифференциального уравнения (2) ищем в виде: произведения двух

Разделение переменных

Решение дифференциального уравнения (2) ищем в виде:
произведения двух

функций, из которых одна является
только функцией времени , другая – только функцией х.
(5)
Подставляем (5) в (2):
или:
Разделим переменные: (6)
Так как левая часть уравнения (6) является только
функцией , а правая – только х, то равенство (6) имеет
место при любых их значениях. Тогда левая и правая части
этого уравнения равны константе. Пусть это будет
Слайд 16

Решение в общем виде то есть: (7) (8) Получилась система дифференциальных

Решение в общем виде

то есть: (7)

(8)
Получилась система дифференциальных уравнений (7)


и (8), которой удовлетворяют соответственно функции:
; .
Подставляя их в (5), получим: (9)
При граничных условиях на оси:
производная от (9):
Слайд 17

Константы интегрирования Так как то или: При: а при Таким образом,

Константы интегрирования

Так как то


или: При:
а при

Таким образом, решение надо отбросить,
как не удовлетворяющее граничным условиям.
Тогда при уравнение (9) запишется в виде:
(10)
или с учетом граничных
условий на поверхности:
Слайд 18

Аналитическое решение то есть (11) После сокращения на или: Здесь число

Аналитическое решение

то есть (11)
После сокращения на
или: Здесь число (критерий)


Био – соотношение конвективной теплоотдачи снаружи и
теплопроводности внутри тела.
Обозначив получим: (12)
Уравнение (12) можно решить графически (см. следующий
слайд).
Слайд 19

Графическое решение уравнения охлаждения (нагревания) пластины

Графическое решение уравнения охлаждения (нагревания) пластины

Слайд 20

Результаты графического решения При то есть функция совпадает с осью абсцисс,

Результаты графического решения

При то есть функция совпадает

с осью

абсцисс, то есть:
При то есть функция совпадает
с осью ординат, при этом:
Каждому соответствует свое частное распределение
избыточных температур , которое не является решением
дифференциального уравнения (2).
Решение можно представить в виде суммы ряда
где достаточно иметь n = 4 , значения которых
при Bi = 0 - ∞ приведены в таблице на следующем слайде.
Слайд 21

Значения для пластины

Значения для пластины


Слайд 22

Условия на оси пластины В безразмерном виде: здесь число Fo (критерий)

Условия на оси пластины

В безразмерном виде:
здесь число Fo (критерий)

Фурье – безразмерное время.
Для , с достаточной точностью, можно ограничиться
только первым членом ряда , тогда:
(13)
Пусть тогда: (14)
На оси пластины обозначим
Итак, безразмерный избыток
температуры на оси пластины: (15)
Слайд 23

Условия на поверхности пластины На поверхности пластины: Введем обозначение тогда: (16)

Условия на поверхности пластины

На поверхности пластины:
Введем обозначение тогда:

(16)
Функции табулированы и могут быть взяты из
справочника. Логарифмируя (15), получим:
(17)
то есть в логарифмических координатах эта зависимость
прямолинейна.
То же самое для уравнения (16). Решения для уравнений
(15) и (16) могут быть найдены графически.
Слайд 24

Графические решения На оси пластины: (18) На поверхности пластины: (19) Точные

Графические решения

На оси пластины: (18)
На поверхности пластины: (19)

Точные графики для оси пластины (Х = 0) и для ее
поверхности (Х = 1) есть в учебнике Исаченко, В.П.
«Теплопередача».
По этим графикам находятся сначала избыточные
температуры на оси и на поверхности в К,
после чего по уравнениям (18) и (19) соответственно
определяются сами температуры пластины в °С.
На следующем слайде показан вид такого графика.