Кинематика точки. Способы задания движения. Уравнения движения. Траектория. Закон движения точки

Содержание

Слайд 2

Содержание Тема 1. Кинематика точки. Способы задания движения. Уравнения движения. Траектория.

Содержание

Тема 1. Кинематика точки. Способы задания движения. Уравнения движения. Траектория. Закон

движения точки. Связь между тремя способами задания движения. Скорость точки.
Тема 2. Ускорение точки. Равнопеременное движение точки. Классификация движения точки. Пример решения задач на определение кинематических характеристик движения точки. Кинематика твердого тела. Виды движений. Поступательное движение.
Тема 3. Вращательное движение. Угловая скорость и угловое ускорение. Равнопеременное вращение. Скорость и ускорение точки тела при вращательном движении. Скорость и ускорение точки вращающегося тела как векторные произведения. Формула Эйлера. Преобразование вращений.
Тема 4. Сферическое движение твердого тела. Теорема Эйлера. Угловая скорость и угловое ускорение. Скорость и ускорение точки тела во сферическом движении. Общий случай движения. Скорость точки свободного тела. Независимость векторов угловой скорости и углового ускорения от выбора полюса. ускорение точки свободного тела.
Тема 5. Сложное движение точки. Теорема о сложении ускорений точки при сложном движении. Теорема о сложении ускорений при сложном движении точки. Ускорение Кориолиса. Причины возникновения ускорения Кориолиса.

Рекомендуемая литература
Основная литература
Трофимова Т.И.Курс физики. М.: Высшая школа, 1990.
Дж.Б.Мэрион. Курс физики. М., 1994.
Лаврова Т.И. Курс физики. - М.: Высшая школа, 1987.
Волькенштейн В.С. Сборник задач по общему курсу физики. – М.: Наука, 1990.
Чертов А.Г. и др. Задачник по физике (с примерами решения задач и справочными материалами) М.:Высшая школа, 1973.
Дополнительная литература
Линднер Г. Картины современной физики. - М.: Мир, 1977.
Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике. М.: Мир. 1977.
Трофимова Т.И.Краткий курс физики. М.: Высшая школа, 2000.
Зисман Г.А., Тодес О.М. Курс общей физики. М.: Наука, 1974.
Трофимова Т.И., Павлова З.Г. Сборник задач по физике. М.: Высшая школа, 2003.
Балаш В.А. Задачи по физике и методы их решения. – М.: Просвещение, 1974.

Слайд 3

Тема 1 Кинематика – раздел теоретической механики, изучающий механическое движение без

Тема 1

Кинематика – раздел теоретической механики,
изучающий механическое движение без учета сил,


вызывающих это движение, состоит из двух отделов:
Кинематика точки – изучает движение материальной точки, является базой для изучения движения точек твердого тела.
Задание движения точки – необходимо иметь возможность определения положения точки в пространстве в любой момент времени (уравнения, геометрия механизма и известный закон движения ведущего звена).
Траектория движения точки – совокупность положений точки в пространстве при ее движении.

Кинематика точки

Кинематика

Кинематика твердого тела

Задаются координаты положения точки.

Задаются закон движения точки и траектория.

Три способа задания движения точки:
Векторный способ: Координатный способ: Естественный способ:
Задается величина и направление радиуса-вектора.

Все три способа задания эквивалентны и связаны между собой:
1. Векторный и координатный – соотношением:

2. Координатный и естественный – соотношением:

3. Для получения уравнения траектории движения необходимо из уравнений движения координатного способа исключить время, т.к. траектория
не зависит от времени:

Последние два уравнения представляют собой уравнения линейчатых поверхностей,
линия пересечения которых и есть траектория движения точки.

Например:

Последние два уравнения представляют собой уравнения цилиндрической поверхности
радиуса R c образующей, параллельной оси z, и плоской поверхности, параллельной
координатной плоскости Oxy и смещенной по оси z на величину c. Линия пересечения
этих поверхностей (окружность радиуса R) - траектория движения точки.

1

Слайд 4

Тема 1 Скорость точки – величина, характеризующая быстроту изменения положения точки

Тема 1

Скорость точки – величина, характеризующая быстроту изменения положения точки в

пространстве.

Три способа задания движения точки определяют способы определения скорости точки:
Векторный способ: Сравним два положения точки в моменты времени t и t1= t + Δt:

вектор средней скорости в интервале времени Δt,

вектор истинной скорости точки в момент времени t, направлен по касательной к траектории
(при приближении M1 к M хорда занимает положение касательной).

Устремим Δt → 0 и перейдем к пределу:

Предел отношения приращения функции
к приращению приращения аргумента есть
производная функции (по определению):

направлен по направлению вектора перемещения (хорде MM1).

Связь радиуса-вектора с координатами определяется выражением:

Проекции
скорости
на оси
координат:

Представим радиус-вектор как сложную функцию:

Представим производную
радиус-вектора как предел:

Вектор приращения радиуса-вектора направлен по хорде MM1 и в пределе занимает положение касательной.

При Δs → 0 радиус кривизны ρ1 → ρ, угол
между радиусами кривизны Δϕ → 0, числитель -
- основание равнобедренного треугольника,
знаменатель – длина круговой дуги радиуса ρ.

Таким образом, производная радиуса-вектора по дуговой координате есть единичный вектор, направленный по касательной к траектории.
Вектор скорости равен: Проекция скорости на касательную:
При вектор скорости направлен в сторону увеличения дуговой координаты, В противном случае – в обратную сторону.

Величина производной
радиуса-вектора
по дуговой координате равна 1:

Координатный способ:

Естественный способ:

Используем векторную форму определения скорости:

Используем векторную форму определения скорости:

Компоненты
(составляющие)
вектора
скорости:

2

Слайд 5

Тема 2 Ускорение точки – величина, характеризующая быстроту изменения скорости точки.

Тема 2

Ускорение точки – величина, характеризующая быстроту изменения скорости точки.

Три способа

задания движения точки определяют способы определения ускорения точки:
Векторный способ: Сравним скорости точки в двух положениях точки в моменты времени t и t1= t + Δt:

вектор среднего ускорения в интервале времени Δt, направлен в сторону вогнутости траектории.

Переходя к пределу получаем:

вектор истинного ускорения точки в момент времени t, лежит в соприкасающейся плоскости (предельное положение плоскости, проведенной через касательную в точке M и прямую, параллельную касательной в точке M1, при стремлении M1 к M) и направлен в сторону вогнутости траектории.

Координатный способ: Используем полученное векторное выражение и связь радиуса-вектора с координатами

Проекции
ускорения
на оси
координат:

Компоненты
(составляющие)
вектора
ускорения:

Естественный способ: Используем векторное выражение для ускорения и выражение для скорости при естественной способе задания:

Величина производной
единичного касательного вектора
по дуговой координате:

Представим единичный
касательный вектор
как сложную функцию:

Производная единичного
касательного вектора:

При Δs → 0 радиус кривизны ρ1 → ρ, угол
между радиусами кривизны Δϕ → 0, числитель -
основание равнобедренного треугольника,
образованного единичными векторами τ1 и τ,
знаменатель – длина круговой дуги радиуса ρ.

Таким образом, производная
единичного касательного вектора
по дуговой координате есть вектор,
направленный перпендикулярно
касательной к траектории.

Угол между приращением
единичного вектора Δτ
и самим вектором τ
при Δϕ → 0, стремится к 90о.

Введем единичный вектор n, нормальный (перпендикулярный) к касательной,
направленный к центру кривизны.

С использованием вектора n и ранее
определенных величин
ускорение представляется как сумма векторов:

Компоненты
(составляющие)
вектора
ускорения:

Проекции
ускорения
на оси τ и n:

Таким образом полное ускорение точки есть векторная сумма двух ускорений:
касательного, направленного по касательной к траектории в сторону увеличения дуговой координаты, если (в противном случае – в противоположную) и
нормального ускорения, направленного по нормали к касательной в сторону центра
кривизны (вогнутости траектории):

Модуль полного ускорения:

3

Слайд 6

Тема 2 Равнопеременное движение точки – движение точки по траектории, при

Тема 2

Равнопеременное движение точки – движение точки по траектории, при котором

касательное ускорение не изменяется по величине.

Запишем выражение для касательного ускорения через проекцию скорости:

Полученное выражение есть дифференциальное уравнение, которое легко решается разделением переменных и интегрированием левой
и правой частей:

В свою очередь скорость точки также связывается с дуговой координатой дифференциальной зависимостью:

После подстановки
выражения для скорости
и интегрирования получаем :

скорость точки
при равнопеременном движении

дуговая координата
точки при равно-
переменном движении

Классификация движений точки.

4

Слайд 7

Тема 2 Кинематика твердого тела – изучает движение твердого тела, кинематика

Тема 2

Кинематика твердого тела – изучает движение твердого тела, кинематика точки

используется для получения новых зависимостей и формул.
Существует пять видов движения твердого тела:
1. Поступательное (ползун, поршень насоса, спарник колес паровоза, движущегося по прямолинейному пути, кабина лифта, дверь купе, кабина колеса обозрения).
2. Вращательное (маховик, кривошип, коромысло, колесо обозрения, обычная дверь).
3. Плоскопараллельное или плоское (шатун, колесо локомотива при качении по прямолинейному рельсу, шлифовальный круг).
4. Сферическое (гироскоп, шаровая стойка).
5. Общий случай движения или свободный полет (пуля, камень, небесное тело)

Поступательное движение твердого тела – такое движение при котором любая прямая, жестко связанная с телом, остается параллельной самой себе. Обычно поступательное движение отождествляется с прямолинейным движением его точек, однако это не так. Точки и само тело (центр масс тела) могут двигаться по криволинейным траекториям, см. например, движение кабины колеса обозрения.

Теорема о поступательном движении твердого тела – При поступательном движении твердого тела все его точки описывают тождественные траектории и имеют в каждый момент времени геометрически равные скорости и ускорения.

C

Проведем радиус-векторы к двум точкам A и B, а также соединим эти точки вектором rBA.

В любой момент времени выполняется векторное равенство:

В любой момент времени вектор rBA остается постоянным по направлению
(по определению поступательного движения) и по величине
(расстояние между точками не изменяется). Отсюда:
и это означает, что в каждый момент времени положение точки A отличается от положения
точки B на одну и ту же величину rBA = const, т.е. траектории этих двух точек тождественны
(совпадают друг с другом при наложении).

Продифференцируем по времени левую и правую часть соотношения:
и это означает, что в каждый момент времени скорость точки A равна геометрически
(т.е. векторно) скорости точки B.

Второе дифференцирование по времени приводит к соотношению:
и это означает, что в каждый момент времени ускорение точки A равно геометрически
(т.е. векторно) ускорению точки B.

Таким образом, поступательное движение твердого тела полностью определяется
движением одной точки, принадлежащей этому телу и выбранной произвольным образом.
Все параметры движения этой точки (траектория, скорость и ускорение) описываются
уравнениями и соотношениями кинематики точки.

5

Слайд 8

Тема 3 Вращательное движение твердого тела – движение при котором все

Тема 3

Вращательное движение твердого тела – движение при котором все его

точки движутся в плоскостях, перпендикулярных некоторой неподвижной прямой, и описывают окружности с центрами, лежащими на этой прямой, называемой осью вращения.

Задание вращательное движения – движение задается законом изменения двугранного угла φ (угла поворота), образованного неподвижной плоскостью P, проходящей через ось вращения, и плоскостью Q, жестко связанной с телом:

P

Q

- уравнение вращательного движения

Угловая скорость – величина, характеризующая быстроту изменения угла поворота.

средняя угловая скорость в интервале времени Δt,

Устремим Δt → 0 и перейдем к пределу:

истинная угловая скорость
в момент времени t

Если dφ/dt > 0, то вращение происходит в сторону увеличения угла поворота,
если dφ/dt < 0, то вращение происходит в сторону уменьшения угла поворота.

Угловое ускорение – величина, характеризующая быстроту изменения угловой скорости.

среднее угловое ускорение в интервале времени Δt,

Устремим Δt → 0 и перейдем к пределу:

истинное угловое ускорение
в момент времени t

Если d2φ/dt2 и dφ/dt одного знака, то скорость увеличивается по модулю и вращение называется ускоренным (дуговые стрелки угловой скорости и углового ускорения направлены в одну сторону),
если d2φ/dt2 и dφ/dt разного знака, то скорость уменьшается по модулю и вращение называется замедленным (дуговые стрелки угловой скорости и углового ускорения направлены в противоположные стороны).

Угловая скорость изображается дуговой стрелкой в сторону вращения.

ω

Угловое ускорение изображается дуговой стрелкой в сторону увеличения угла поворота при .

ε

Равномерное вращение – угловая скорость не изменяется по величине.

Равнопеременное вращение – угловое ускорение не изменяется по величине.

6

Слайд 9

Тема 3 Скорость точки при вращательном движении твердого тела – траектория

Тема 3

Скорость точки при вращательном движении твердого тела – траектория точки

известна (окружность радиуса R – расстояние точки до оси вращения), можно применить формулу для определения скорости точки при естественном задании движения:

O

+

-

s

φ

R

Дуговая координата связана
с радиусом окружности:

Тогда проекция скорости
на касательную к окружности:

Поскольку далее работают с модулем угловой скорости после изображения ее
в виде дуговой стрелки расчетной формулой является выражение для модуля скорости:
и вектор скорости направляют перпендикулярно радиусу
в сторону дуговой стрелки угловой скорости.

ω

Как следует из формулы скорость точки пропорциональна расстоянию ее до оси вращения (радиусу вращения).

Ускорение точки при вращательном движении твердого тела – траектория точки известна, можно применить
формулы для определения ускорений точки при естественном задании движения:

Тогда проекции ускорения
на касательную
к окружности и нормаль:

Поскольку далее работают с модулем углового ускорения после изображения его в виде дуговой стрелки расчетной формулой является выражение для касательного ускорения: и вектор этого ускорения, называемого вращательным ускорением, направляют перпендикулярно радиусу в сторону дуговой стрелки углового ускорения.

ε

Нормальное ускорение теперь называется осестремительным ускорением , его направляют по радиусу к оси вращения независимо от направления дуговой стрелки угловой скорости, не говоря уж о направлении дуговой стрелки углового ускорения.

Как следует из формул оба ускорения точки пропорциональны расстоянию ее до оси вращения (радиусу вращения).

Полное ускорение точки, как и ранее, есть векторная сумма этих ускорений:

Угол между направлением полного ускорения и радиусом от величины радиуса не зависит и равен:

Скорость и ускорения точки при вращательном движении как векторные произведения.
Представим угловую скорость и угловое ускорения как векторы, направленные по оси вращения в ту
сторону, откуда дуговые стрелки этих величин указывают вращение против часовой стрелки.

z

z

Положительное направление оси z можно задать с помощью единичного вектора k, тогда векторы угловой скорости и углового ускорения можно представить как:
где ωz, εz – проекции соответствующих векторов на ось z.

7

Слайд 10

Тема 3 Скорость точки при вращательном движении как векторное произведение –

Тема 3

Скорость точки при вращательном движении как векторное произведение –

определяется выражением , которое
описывает и величину, и направление скорости.

ω

Величина (модуль) этого векторного произведения:

R

R

Таким образом:

Направление вектора рассматриваемого векторного произведения:
по определению векторного произведения – перпендикулярно плоскости, проведенной через умножаемые вектора, направлен в ту сторону, откуда поворот первого вектора ко второму на наименьший угол кажется происходящим
против часовой стрелки;

по правилу правой руки – при совмещении большого пальца с первым вектором, остальных – со вторым вектором,
поворот большого пальца перпендикулярно ладони указывает на направление вектора векторного произведения.

Таким образом, действительно векторное произведение угловой скорости и радиус-вектора полностью определяет величину и направление скорости точки при вращательном движении в соответствии с ранее полученными результатами.

Вращательное ускорение точки как векторное произведение – определяется выражением , которое
описывает и величину, и направление вращательного ускорения.

Величина (модуль) этого векторного произведения:

Таким образом:

R

Направление вектора рассматриваемого векторного произведения можно установить по определению векторного произведения или по правилу правой руки.

Таким образом, действительно векторное произведение углового ускорения и радиус-вектора полностью определяет
величину и направление вращательного ускорения точки в соответствии с ранее полученными результатами.

R

Осестремительное ускорение точки как векторное произведение – определяется
выражением , которое описывает и величину, и направление осестремительного
ускорения.

Величина (модуль) этого векторного произведения:

1, т.к. вектор скорости точки перпендикулярен плоскости,
в которой лежит вектор угловой скорости.

Таким образом:

Направление вектора рассматриваемого векторного произведения можно установить по определению векторного произведения или по правилу правой руки.

Таким образом, действительно векторное произведение угловой скорости и вектора скорости точки полностью определяет величину и направление осестремительного ускорения точки в соответствии с ранее полученными результатами.

Это векторное произведение может быть также записано в виде:

1

2

8

Слайд 11

Тема 3 Формулы Эйлера – с помощью раскрытия векторного произведения для

Тема 3

Формулы Эйлера – с помощью раскрытия векторного произведения для

скорости точки можно получить общие аналитические выражения для этой скорости через координаты рассматриваемой точки при произвольной расположении оси вращения в пространстве:

Отсюда получаются аналитические формулы для проекций скоростей точки:

Преобразования вращательных движений – изменение величины и направление угловых скоростей вращающихся звеньев в различных передаточных механизмах:

Скорости входящих в контакт точек колес при отсутствии проскальзывания равны:

Отсюда:

Передаточное число, характеризующее изменение скорости вращения при передаче вращения от одного звена к другому – отношение угловой скорости ведущего колеса
к угловой скорости ведомого:

9

Слайд 12

КОНТРОЛЬ Примеры использования ЦС для определения скоростей точек плоской фигуры –

КОНТРОЛЬ

Примеры использования ЦС для определения скоростей точек плоской фигуры – Поскольку

при движении плоской фигуры в каждый момент времени существует точка (МЦС), жестко связанная с плоской фигурой, скорость которой в этот момент равна нулю, то при определении скоростей эту точку и следует выбирать в качестве полюса, играющего роль центра вращения в данный момент времени.
Ниже рассмотрим процедуру определения скоростей на примерах:

1

Дано: vA, положения точек A, B, C,проскальзывание отсутствует.
Найти: vB, vC

1) ЦС находится на перпендикуляре к вектору vA
(нет проскальзывания и точка с нулевой скоростью
совпадает с точкой контакта колеса и неподвижной
поверхностью качения).

2) Определяем угловую скорость:

3) Соединяем точки B и C с ЦС и определяем скорости этих точек:

Дуговая стрелка угловой скорости направлена
в сторону вектора линейной скорости vA.

Векторы линейных скоростей vB и vC направлены
в сторону дуговой стрелки угловой скорости.

2

Дано: vA, ω ,положения точек A, B, C.
Найти: vB, vC

1) МС находится на перпендикуляре к вектору vA

2) Определяем расстояние до МЦС:

3) Соединяем точки B и C с ЦС и определяем скорости этих точек:

Расстояние AP откладываем в сторону дуговой
стрелки угловой скорости. Дуговую стрелку
угловой скорости изображаем вокруг МЦС.

Векторы линейных скоростей vB и vC направлены
в сторону дуговой стрелки угловой скорости.

3

Дано: vA, vB, положения точек A, B, C.
Найти: vC

ЦС находится на пересечении перпендикуляров
к векторам vA ,vB,

2) Определяем угловую скорость:

Вектор линейной скорости vC направлен
в сторону дуговой стрелки угловой скорости.

Дуговая стрелка угловой скорости направлена
в сторону векторов линейных скоростей vA ,vB.

3) Соединяем точку C с ЦС и определяем скорость
этой точки:

4

Дано: vA, траектория точки B, положения точек A, B, C.
Найти: vC,

ЦС находится на пересечении перпендикуляров
к вектору vA и касательной к траектории точки B.

2) Определяем угловую скорость:

Вектор линейной скорости vC направлен
в сторону дуговой стрелки угловой скорости.

Дуговая стрелка угловой скорости направлена
в сторону векторов линейной скорости vA .

3) Соединяем точку C с ЦС и определяем скорость
этой точки:

13

Слайд 13

Тема 4 Сферическое движение твердого тела – одна из точек тела

Тема 4

Сферическое движение твердого тела – одна из точек тела остается

неподвижной во время движения. Остальные точки движутся по сферическим поверхностям, центры которых совпадают с неподвижной точкой.
Углы Эйлера – используются для описания сферического движения твердого тела посредством ввода двух системы координат:

x

y

z

J

ξ

η

ζ

Oxyz – неподвижная система координат с началом в неподвижной точке,
Oξηζ - подвижная система координат, жестко связанная с телом, с началом в той же точке.

O

Положение подвижной системы координат может быть однозначно задано тремя углами:
ψ - угол поворота системы Oξηζ вокруг оси z – угол прецессии;

2) θ – угол поворота системы Oξηζ вокруг нового положения горизонтальной оси x (OJ) – угол нутации;

φ - угол поворота системы Oξηζ вокруг нового положения вертикальной оси z (Oζ) – угол собственного
вращения.

Уравнения сферического движения твердого тела:

Теорема Эйлера – Твердое тело, имеющее одну неподвижную точку, можно переместить
из одного положения в другое одним поворотом вокруг некоторой оси, проходящей через эту точку.

17