Сопротивление материалов. Введение. Основные определения. Лекция 1

Содержание

Слайд 2

Содержание Лекция 1. Введение. Основные определения. Реальный объект и расчетная схема.

Содержание

Лекция 1. Введение. Основные определения. Реальный объект и расчетная схема. Схематизация

свойств материала и геометрии объекта. Внешние силы. Метод сечений. Внутренние усилия.
Лекция 2. Напряжения. Перемещения и деформации. Виды простейших деформаций. Внутренние усилия при растяжении-сжатии. Построение эпюр продольных сил и крутящих моментов.
Лекция 3. Основные типы опор и балок. Чистый и поперечный изгиб. Внутренние усилия при изгибе. Дифференциальные зависимости. Построение эпюр поперечных сил и изгибающих моментов.
Лекция 4. Центральное растяжение-сжатие. Принцип Сен-Венана. Напряжения и деформации. Коэффициент Пуассона. Закон Гука. Модуль упругости. Напряжения на наклонных площадках.
Лекция 5. Перемещения при растяжении сжатии. Учет собственного веса. Статически неопределимые системы при растяжении сжатии. Расчет статически неопределимых систем на действие нагрузки, температуры и неточность сборки (натяг).
Лекция 6. Испытание материалов на растяжение-сжатие. Характеристики прочности и пластичности. Идеализированные диаграммы. Потенциальная энергия деформации (полная, удельная).
Лекция 7. Диаграмма сжатия. Основные механические характеристики. Особенности разрушения пластических и хрупких материалов при растяжении-сжатии малоуглеродистой стали и чугуна. Понятие о ползучести и релаксации.
Лекция 8. Основные сведения о расчете конструкций. Методы допускаемых напряжений и предельных состояний. Определение предельных нагрузок в статически неопределимых системах из идеального упруго-пластического материала.
Слайд 3

Лекция 3 1 Шарнирно- неподвижная опора – ограничивает перемещение объекта как

Лекция 3

1

Шарнирно- неподвижная опора – ограничивает перемещение объекта
как по нормали к

опорной плоскости, так и по касательной (не препятствует повороту).

Реакция неподвижного
шарнира проходит через центр шарнира перпендикулярно оси шарнира и имеет произвольное направление.

Реакцию неподвижного
шарнира можно разложить на две составляющие, например, Rx и Ry, параллельные координатным осям.

Другие схематические изображения
шарнирно-неподвижной опоры:

Жесткое защемление (жесткая заделка) – ограничивает как поступательные, так и вращательные движения (линейные и угловые перемещения) объекта. В случае плоской системы сил (плоская заделка)
ограничиваются перемещения по осям x, у и поворот в плоскости x, у.

В жесткой плоской заделке возникает три реактивных усилия: две составляющие реактивные силы RAx и RAy,
а также реактивный момент (пара сил) MA .

В сопротивлении материалов и далее в строительной механике горизонтальные и вертикальные реакции для сокращения наименования часто обозначают как HA (horizontal) и VA (vertical).
В случае пространственной системы сил возникают три реакции по направлению трех координатных осей и три реактивных момента (пар сил) относительно этих осей.

Схематизация опорных устройств – упрощает реальные конструкции опорных устройств с сохранением функций
ограничения перемещений. Схематизация большинства из опорных устройств рассмотрена в курсе теоретической механике
и сводится к к нескольким типам опор:
Шарнирно-подвижная (катковая) опора – ограничивает перемещение объекта
по нормали к опорной плоскости (не препятствует повороту и перемещению
по касательной к опорной плоскости).

Реакция подвижного
шарнира проходит через центр шарнира перпендикулярно оси шарнира и плоскости опирания.

Другие схематические изображения
шарнирно-подвижной опоры:

Основные типы опор и балок – Стержни, работающие главным образом на изгиб, называются балками. Балки являются простейшими
несущими конструкциями в мостах, промышленных и гражданских сооружениях. Балки опираются на другие конструкции или основание (стены,
колонны, устои и др.).

Основные типы балок – различаются способом закрепления:
Консоль – один конец жестко защемлен, второй свободен.
Простая (двух опорная) – по обоим концам шарнирные опоры.
Консольная (двух опорная) – простая балка с консольными частями.
Составная балка – составленная из двух или более простых, консольных балок и консолей.

Во всех случаях число связей должно быть достаточным для обеспечения неподвижности балки (плоские системы – 3, пространственные – 6)
и способы постановки связей должны исключать мгновенную изменяемость системы.
Примеры мгновенно-изменяемых систем:

A

Слайд 4

Лекция 3 (продолжение – 3.2) 2 Определение опорных реакций в балках

Лекция 3 (продолжение – 3.2)

2

Определение опорных реакций в балках – выполняется

методами теоретической механики.
Уравнения равновесия могут быть составлены в виде одной из трех форм:
Поскольку найденные опорные реакции участвуют в дальнейших расчетах (построение эпюр внутренних усилий, определение
напряжений и перемещений) следует активно пользоваться этими формами уравнений так, чтобы в каждое из уравнений входила лишь одна
определяемая реакция, чтобы исключить подстановку ранее найденных и не проверенных реакций. После независимого вычисления всех
реакций обязательно должна быть сделана проверка составлением такого уравнения равновесия, в котором бы присутствовали все или
большинство из найденных реакций. Поскольку балки несут преимущественно вертикальную нагрузку, то в общем случае рекомендуется
воспользоваться формой II и проверить вертикальные реакции составлением уравнения в проекциях на вертикальную ось.
Помните, что неверно найденные реакции в любом случае приведут к неверным результатам при построении эпюр, определении
напряжений и перемещений!

Внутренние усилия при изгибе – При изгибе возникают в общем случае изгибающие моменты Mx, My и поперечные силы Qx , Qy.
Если в поперечном сечении возникает только один изгибающий момент Mx, то такой изгиб называется чистым.
В большинстве случаев дополнительно к изгибающему моменту возникает поперечная сила Qy, и такой изгиб
называется поперечным.
Если внешняя нагрузка и реактивные усилия лежат в одной плоскости, то такой изгиб называется плоским.
Правила знаков для изгибающего момента – Изгибающий момент принимается положительным,
если он изгибает элемент балки так, нижние волокна оказываются растянутыми, т.е. ось балки искривляется
выпуклостью вниз.
Правила знаков для поперечной силы – Поперечная сила считается положительной, если она
стремится повернуть элемент балки по ходу часовой стрелки.

■ Дифференциальные зависимости при изгибе – связывают внутренние усилия между собой в сечении и нагрузкой. Выделим из балки элемент длиной dz, находящийся по действием внешней вертикальной равномерно распределенной нагрузкой q, и заменим действие отброшенных частей внутренними усилиями:

Выделенный элемент находится в равновесии
и удовлетворяет уравнения равновесия:

Из первого уравнения
получаем:
Производная от поперечной силы
по продольной координате равна
интенсивности распределенной нагрузки.

Из второго уравнения, пренебрегая малыми
второго порядка получаем:
Производная от изгибающего момента
по продольной координате равна поперечной силе.

Слайд 5

Лекция 3 (продолжение – 3.3) 3 Построение эпюр изгибающих моментов и

Лекция 3 (продолжение – 3.3)

3

Построение эпюр изгибающих моментов и поперечных сил

– принципиально ничем не отличается от построения эпюры продольных сил и крутящих моментов. Положительные значения поперечной силы Qy откладываются вверх от горизонтальной базовой линии, а отрицательные – вниз. Положительные значения изгибающих моментов Mx откладываются вниз – со стороны растянутого волокна. Таким образом расположение ординат эпюры Mx указывают, какие волокна растянуты.
Примечание: Это правило принято в строительных и транспортных вузах в то время, как в машиностроительных и авиационных вузах используется обратное правило (положительный момент откладывается со стороны сжатого волокна).

Пусть балка нагружена равномерно распределенной нагрузкой q, сосредоточенной силой F=qa и крутящим моментом M=qa2:

q

F

M

1. Определяем
опорные реакции:

HA

VA

VB

A

B

z

y

Из второго и третьего
уравнений получаем:

Выполняем контроль:

VB = 1,75qa

VA = 1,25qa

2. Количество участков – 3.

y

Отсюда получаем:

3. Проведем сечение II-II на втором участке и определим текущую координату сечения и пределы ее
изменения: 0 ≤ z2 ≤ 2a.

Повторяем шаги 3 и 4 для следующих участков:

4. Отбросим правую часть, заменим ее действие поперечной силой QyII-II и изгибающим моментом MxII-II
и составим уравнения равновесия в проекциях и в моментах относительно оси x, проходящей через
центр текущего сечения (т.е. относительно точки D) :

Отсюда получаем:

Аналогично получаем для участка 3 (0 ≤ z3 ≤ 2a):

Слайд 6

Лекция 4 4 Центральное растяжение-сжатие – Во многих элементах конструкций возникают

Лекция 4

4

Центральное растяжение-сжатие – Во многих элементах конструкций возникают только продольные

усилия, вызывающие в них деформации растяжения или сжатия (стойки, элементы ферм, тяги, тросы и т.п.). При этом в местах приложения условно сосредоточенных сил характер распределения деформаций достаточно сложный и отличается от распределения деформаций на удалении от этой локальной области. Размер этой области равен примерно наибольшему из размеров поперечного сечения.
Принцип Сен-Венана - Если совокупность некоторых сил, приложенных к небольшой части поверхности тела, заменить статически эквивалентной системой других сил, то такая замена не вызовет существенных изменений в условиях нагружения частей тела, достаточно удаленных от мест приложения исходной системы сил.
Как показывает опыт, за пределами этой области деформации практически постоянны и поперечные сечения перемещаются параллельно своим начальным положениям. На основании этого вводится гипотеза плоских сечений (Я. Бернулли):
Поперечные сечения стержня, плоские и перпендикулярные оси стержня до деформации, остаются плоскими и перпендикулярными после деформации.

Напряжения и деформации – Как было ранее сказано, задача определения напряжений всегда является статически неопределимой.
Такие задачи решаются последовательным рассмотрением статической, геометрической и физической сторон.
В данном случае имеем статическое уравнение, связывающее внутреннее усилие – продольную силу с напряжением:.

Для вычисления интеграла необходимо знать закон изменения напряжений по сечению. Этот закон можно установить
изучением непосредственно наблюдаемых перемещений (деформаций). Поскольку принимается гипотеза плоских сечений, то при отсутствии
внешней распределенной продольной нагрузки деформации постоянны по сечению и по длине стержня (геометрия) . Из введенного ранее
определения деформаций в точке :

где Δl – абсолютная продольная деформация (удлинение), l - длина (базовая длина) стержня.

Опытным путем установлена фундаментальная (физическая) связь усилий и удлинений (Р. Гук) и в дальнейшем, напряжений и деформаций (Коши, Навье) в виде:

где Е – модуль упругости (физическая постоянная материала, определяемая экспериментально).

Подстановка последнего соотношения – закона Гука в интегральное выражение c учетом постоянства деформации и напряжения дает:

Нормальное напряжение в поперечном сечении прямо пропорционально величине продольного усилия и обратно пропорционально площади сечения.

Абсолютную деформацию (удлинение) стержня также можно определить через продольное усилие:

Формула для абсолютного удлинения справедлива лишь при постоянной по длине стержня продольной силе
и неизменной площади поперечного сечения! В случае переменной продольной силы, например, при учете собственного
веса вертикальных стержней, и/или переменной площади необходимо использовать интегральное выражение:

Слайд 7

Лекция 4 (продолжение – 4.2) 5 Коэффициент Пуассона – При растяжении

Лекция 4 (продолжение – 4.2)

5

Коэффициент Пуассона – При растяжении стержня наряду

с продольной деформацией (удлинением), определяемой законом Гука,
возникает поперечная деформация (сужение поперечного сечения), выражающаяся в уменьшении поперечных размеров стержня.
Относительные поперечные деформации вычисляются как где b, h – размеры поперечного сечения.

Экспериментально установлено, что имеется линейная связь
между продольной и поперечной деформацией: где μ – коэффициент пропорциональности, называемый
коэффициентом Пуассона.
Коэффициент Пуассона для данного материала в пределах упругих деформаций имеет постоянное значение
и находится в пределах от 0 до 0,5.

По закону Гука, определяющему связь нормальных напряжений с продольными деформациями:
Тогда

Как упоминалось ранее, в общем случае нагружения по граням выделенного
элемента возникают нормальные и касательные напряжения. Последние,
вызывая деформации сдвига, не влияют на линейные деформации,
поскольку не изменяют длин сторон элемента. Используя принцип независимости
действия сил, справедливый для изотропного и линейно упругого материала,
можно записать обобщенный закон Гука, учитывающий одновременное действие
нормальных напряжений по всем граням элемента:

Напряжения по наклонным площадкам – При растяжении стержня в его
поперечном сечении возникают только нормальные напряжения. Посмотрим
какие напряжения возникают в сечении, не перпендикулярном оси стержня.

α

1. Отбросим правую часть и заменим ее действие главным вектором внутренних сил Rα :
Из уравнения равновесия в проекции на ось стержня Rα = F.


2. Разложим это внутреннее усилие на нормальную и касательную к сечению составляющие Nα и Qα:



α

3. Вычислим нормальные и
касательные напряжения
по наклонному сечению
площадью Aα =A/cosα:

Здесь по-прежнему предполагается равномерное распределение напряжений по сечению.

С учетом того, продольная сила N в поперечном сечении равна внешней растягивающей силе F, отношение F/A = N/A есть нормальное напряжение в поперечном сечении. Тогда получаем:

Слайд 8

Лекция 5 6 Определение перемещений при растяжении-сжатии – Рассмотрим стержень, нагруженный

Лекция 5

6

Определение перемещений при растяжении-сжатии – Рассмотрим стержень, нагруженный растягивающей силой

F. Выделим на расстоянии z участок длиной dz. Удлинение этого участка Δdz равно перемещению второй его границы относительно первой dw.
Деформация на этом участке определяется выражением,
представляющим собой дифференциальное уравнение:

Разделим переменные и сведем решение этого уравнения
к интегрированию левой и правой частей:

Подставим пределы и выражение для деформации,
следующего из закона Гука:

Здесь w0 – перемещение левой границы рассматриваемого участка на расстоянии z0, EA – жесткость стержня при растяжении-сжатии,
N – продольное усилие.

В случае постоянства продольного усилия и площади поперечного сечения имеем:

Отсюда, как частный случай, получается выражение для абсолютного удлинения стержня (w0 = 0, z0 = 0, z = l):

Общая формула вычисления перемещений показывает, что перемещения исчисляются нарастающим итогом, т.е. к перемещению, вычисляемому
на рассматриваемом участке [z0 ,z] (второе слагаемое), добавляется перемещение сечения, соответствующего левой границе, и представляющего
перемещение всего участка, как жесткого целого (твердого тела). Если на каждом из участков продольное усилие и площадь поперечного сечения постоянны, то определение перемещения любого сечения или конца стержня сводится к простому суммированию удлинений каждого
из участков от неподвижного сечения до рассматриваемого.

Учет собственного веса – Рассмотрим стержень, нагруженный собственным весом (длина стержня l, объемный вес материала стержня γ).

Продольное усилие от собственного веса в произвольном сечении на расстоянии z равно весу нижерасположенной части стержня
и линейно зависит от координаты. Эпюры продольной силы и нормальных напряжений имеют вид треугольников:

Перемещение произвольного сечения на расстоянии z имеет квадратичную зависимость от координаты:

Определим перемещения конца стержня и сечения на расстоянии половины длины:

Здесь G – вес стержня.

Слайд 9

Лекция 5 (продолжение – 5.2) Статически неопределимые системы при растяжении-сжатии –

Лекция 5 (продолжение – 5.2)

Статически неопределимые системы при растяжении-сжатии – В

статически неопределимых системах число наложенных связей больше числа независимых уравнений равновесия. Как указывалось выше, такие задачи решаются последовательным рассмотрением статической, геометрической и физической сторон, в результате чего получается полная система уравнений, позволяющая найти искомые усилия. Общий порядок решения определяется вышесказанным, конкретные шаги и особенности рассмотрим на примерах:
Пример 1. Стержень переменного сечения (2A и A) жестко заделан с двух сторон и нагружен продольной силой. Построить эпюры N и σ.

1. Выбираем объект равновесия, отбрасываем связи и заменяем их действие реакциями:

RA

RB

2. Статика : Составляем уравнение равновесия:

Это единственное уравнение равновесия, которое можно составить для линейной системы сил.
Следовательно система один раз статически неопределима.

3. Геометрия:
Составляем уравнение совместности деформаций:

Это уравнение устанавливает неизменность общей длины стержня при любых воздействиях, которую обеспечивали связи (жесткие заделки) до их удаления.

4. Физика: Записываем соотношения связи деформаций с усилиями:

Получили полную систему уравнений, решающую данную задачу (5 уравнений и 5 неизвестных – 2 реакции и 3 перемещения) .

Такой же результат можно получить с использованием статически определимой
системы, образованной из заданной статически неопределимой отбрасыванием
“лишней” связи, и принципа независимости действия сил:

RB

Подставим полученное соотношение
в уравнение равновесия:

Это уравнение устанавливает неизменность общей длины стержня, которую обеспечивала “лишняя” связь (правая жесткая заделка) до ее удаления, или равенство перемещений и их противоположное направление при отдельном действии внешней нагрузки и реакции этой связи.

или

Записываем соотношения связи деформаций
(перемещений) с усилиями:

Получили полную систему уравнений, решающую данную задачу
(4 уравнения и 4 неизвестных – 2 реакции и 2 перемещения) .

Подставляем соотношения упругости в уравнения совместности:

Составляем уравнение совместности деформаций:

Подставим полученное соотношение
в уравнение равновесия и получим
величину второй реакции (RB).

Подставляем перемещения в уравнения совместности:

7

Слайд 10

Лекция 5 (продолжение – 5.3) Расчет статически неопределимых систем на действие

Лекция 5 (продолжение – 5.3)

Расчет статически неопределимых систем на действие температуры

– В статически неопределимых системах нагрев (охлаждение) элементов вызывает дополнительные внутренние усилия (напряжения), которые могут значительно превышать усилия от действия силового нагружения. Общий порядок решения задачи сохраняется, но уравнения совместности деформаций (удлинений) содержат удлинения от действия разности температур Δt : α -коэффициент линейного расширения материала, l – длина стержня.
Пример 2. Стержень переменного сечения (2A и A), рассмотренный в примере 1, дополнительно нагревается на Δt градусов.
Δt

1. Выбираем объект равновесия, отбрасываем связи и заменяем их действие реакциями:

RA

RB

2. Статика : Составляем уравнение равновесия:

3. Геометрия:
Составляем уравнение совместности деформаций:

Это уравнение устанавливает неизменность общей длины стержня при любых воздействиях, в том числе от нагрева, которую обеспечивали связи (жесткие заделки) до их удаления.

4. Физика: Записываем соотношения связи деформаций с усилиями и температурным
воздействием:

Подставим полученное соотношение
в уравнение равновесия:

Подставляем соотношения упругости и температурного удлинения в уравнения совместности:

Эпюру продольных сил строим вычислением значений по участкам:
N1 = RA = 4.5 кН, N2 = N3 = RB = -5.5 кН. В сечении, в котором приложена сосредоточенная сила,
получился скачок, равный величине этой силы.

Эпюра нормальных напряжений также строится вычислением значений напряжений по участкам: σ1 = N1 / A1= 22.5 МПа, σ2 = N2 / A2= - 27.5 МПа, σ3 = N3 / A3= - 55 МПа.

Теперь, при температурном воздействии, в выражения для реакций входят абсолютные значения
модуля упругости E и площади A. Вычислим величины реакций для конкретных данных: F = 10 кН,
A = 1 см2, Δt = 10o, E = 2*105 МПа, α =10-5 (сталь):

При отсутствии нагрева
реакции получаются равными
-2.5 кН и 7.5 кН соответственно.

При отсутствии нагрева значения напряжений получаются равными
37.5 МПа, - 12.5 МПа, и -25 МПа соответственно (вид эпюры напряжений см. в примере 1).
Таким образом, нагрев всего на 10о привел к увеличению сжимающей силы
и максимальных сжимающих напряжений
больше, чем в 2 раза.
Статически неопределимые системы всегда реагируют на изменение температуры изменением внутренних усилий.
Это же происходит при взаимных смещениях опор (неравномерная осадка опор).

8

Слайд 11

Лекция 5 (продолжение – 5.4) Расчет статически неопределимых систем на неточность

Лекция 5 (продолжение – 5.4)

Расчет статически неопределимых систем на неточность сборки

– В статически неопределимых системах несоответствие длин изготовленных элементов проектным вызывает дополнительные внутренние усилия, которые могут заметно влиять на результат определения усилий от действия внешних сил. Более того, даже при отсутствии внешних сил, при сборке могут возникать начальные (монтажные) усилия. Общий порядок решения задачи сохраняется, но уравнения совместности деформаций (удлинений) содержат дополнительные удлинения (укорочения) необходимые для осуществления сборки неточно изготовленных элементов.
Пример 2. Абсолютно жесткая балка подвешивается на двух медных и одном стальном (Eм/Eс=1/2) стержнях одинаковой длины. Стальной стержень при изготовлении был сделан длиннее на величину Δ. Определить монтажные усилия после сборки и усилия при нагружении силой F.

1. Выбираем объект равновесия, отбрасываем связи и заменяем их действие реакциями:



2. Статика : Составляем уравнение равновесия:

3. Геометрия: Задаем промежуточное положение балки и составляем
уравнение совместности деформаций:

4. Физика: Записываем соотношения связи деформаций с усилиями:

Подставим полученное соотношение
в уравнение равновесия:

Подставляем соотношения упругости в уравнения совместности:

В выражения для реакций входят абсолютные значения модуля упругости Eм , длины и площади стержней.
Вычислим величины реакций для конкретных данных: l = 2 м, A = 20 см2, Δ = 0.5 мм, Eм = 105 МПа :

медь

медь

сталь

a

a

l

Δ


Реакции от медных
стержней равны из-за
симметрии системы.

Δlм

Δlс

Знак минус присваивается, поскольку стальной
стержень должен укоротиться и внутреннее усилие должно быть отрицательным (сжатие).

Из этого же уравнения равновесия
следует:

При нагружении балки силой F посередине балка получает дополнительное перемещение б:

F

Уравнения равновесия, совместности деформаций и соотношения упругости принимают вид:

Подстановка соотношений
упругости в уравнения
совместности приводит
к ранее полученному
выражению для Rм=Rм(Rс).

Подстановка в уравнение равновесия дает:

Из выражения
Rм=Rм(Rс) :

После подстановки значений силы F =500 кН получаем Rс = 200 кН и Rм= 150 кН.

9