Компьютерная инженерная графика. Тема занятия: Введение в начертательную геометрию

Содержание

Слайд 2

Проецирование Проецирование – получение изображения на плоскости с помощью проецирующих лучей

Проецирование

Проецирование – получение изображения на плоскости с помощью
проецирующих лучей (световых

или зрительных),
исходящих из определенной точки пространства (центра
проецирования), проходящих через точки изображаемого
предмета и отображаемых на плоскости в виде точек и
линий
Плоскость, на которую проецируют предмет, называется плоскостью проекций
В зависимости от направления проецирующих лучей по отношению к плоскости проекций выделяют два метода проецирования: центральное и параллельное.
Слайд 3

Метод центрального проецирования Суть метода В пространстве выбирают произвольную точку S

Метод центрального проецирования

Суть метода
В пространстве выбирают произвольную точку S (см. рис)

в качестве центра проецирования и плоскость Пi, не проходящая через точку S, в качестве плоскости проекций (картинной плоскости). Чтобы спроецировать точку А на плоскость Пi, через центр проецирования S проводят луч SА до его пересечения с плоскостью Пi в точке Аi. Точку Аi принято называть центральной проекцией точки А, а луч SА - проецирующим лучом.
Слайд 4

Метод центрального проецирования Примеры Центральное проецировании линии Центральное проецирование поверхности

Метод центрального проецирования Примеры

Центральное проецировании
линии

Центральное проецирование
поверхности

Слайд 5

Метод параллельного проецирования Суть метода Центр проецирования удален в бесконечность, при

Метод параллельного проецирования

Суть метода
Центр проецирования удален в бесконечность, при этом проецирующие

лучи можно рассматривать как параллельные проецирующие прямые. Положение проецирующих прямых относительно плоскости проекций определяется направлением проецирования S (см.рис). В этом случае полученное изображение называют параллельной проекцией объекта.

При параллельном проецировании сохраняются свойства центрального и
добавляются следующие:
- проекции параллельных прямых параллельны между собой;
- отношение отрезков прямой равно отношению их проекций;
- отношение отрезков двух параллельных прямых равно отношению их проекций.

Слайд 6

Метод Монжа При проецировании на одну плоскость проекции теряется пространственная размерность

Метод Монжа

При проецировании на одну плоскость проекции теряется пространственная размерность предмета.


При центральном проецировании, когда линии предмета совпадают с проецирующими линиями, размерность искажается и пропадает.
В случае параллельного проецирования линии предмета, совпадающие с линиями проецирования, превращаются в точки.
Для решения этих проблем при создании чертежей известный французский ученый и инженер Гаспар Монж предложил метод построения изображений, основанный на прямоугольном проецировании предмета на две взаимно-перпендикулярные плоскости (см.рис.).
Слайд 7

Метод Монжа Чтобы получить плоский чертеж, состоящий из указанных проекций, плоскость

Метод Монжа

Чтобы получить плоский чертеж, состоящий из указанных проекций, плоскость П1

совмещают вращением вокруг оси x12 с плоскостью П2. Проекционный чертеж, на котором плоскости проекций со всем тем, что на них изображено, совмещенные определенным образом одна с другой, называется эпюром Монжа (франц. Epure – чертеж.) или комплексным чертежом.

Эпюр Монжа

Модель Монжа

Слайд 8

Геометрические элементы предмета точка — бесконечно малая величина, не имеющая размера

Геометрические элементы предмета

точка — бесконечно малая величина, не имеющая размера и

имеющая три координаты размещения в пространстве;
линия, состоящая из последовательности бесчисленного множества точек, не имеющих размера и подчиняющихся определенному закону распространения в пространстве;
поверхность, частным случаем которой является плоскость, состоящая из совокупности множества точек, размещенных в пространстве по определенному закону распределения и не имеющая толщины.
Слайд 9

Точка в ортогональной системе двух плоскостей проекций При построении проекции необходимо

Точка в ортогональной системе двух плоскостей проекций

При построении проекции необходимо помнить,

что ортогональной проекцией точки на плоскость является основание перпендикуляра, опущенного из данной точки на эту плоскость. На рисунке показана точка А и ее ортогональные проекции А1 и А2, которые называют соответственно горизонтальной и фронтальной проекциями.
Проекции точки всегда расположены на прямой, перпендикулярной оси x12 и пересекающей эту ось в точке Аx.
Прямые линии, соединяющие разноименные проекции точки на эпюре, называются линиями проекционной связи.
Слайд 10

Точка в ортогональной системе трех плоскостей проекций Модель трех плоскостей проекций

Точка в ортогональной системе трех плоскостей проекций

Модель трех плоскостей проекций показана

на рисунке. Третья плоскость, перпендикулярная и П1, и П2, обозначается как П3 и называется профильной.
Проекции точек на эту плоскость обозначаются прописными буквами латинского алфавита или цифрами с индексом 3.
Слайд 11

Взаимное расположение точек На рисунке представлены точки А, В, С, D,

Взаимное расположение точек

На рисунке представлены точки А, В, С, D, у

которых одна из координат совпадает, а две другие отличаются, их взаимное расположение можно оценить по удаленности к плоскостям проекций следующим образом:
– YА=YВ=YD, то точки А, В и D равноудалены от плоскости П2 и их горизонтальные и профильные проекции расположены, соответственно, на прямых А1В1//x12 и А3В3//z. Геометрическим местом таких точек служит плоскость, параллельная П2;
– ZА=ZВ=ZС, то точки А, В и С равноудалены от плоскости П1 и их фронтальные и профильные проекции расположены, соответственно, на прямых А2В2//x12 и А3С3//y. Геометрическим местом таких точек служит плоскость, параллельная П1;
– XА=XC=XD, то точки А, C и D равноудалены от плоскости П3 и их горизонтальные и фронтальные проекции расположены, соответственно, на прямых А1C1// y и А2D2//z . Геометрическим местом таких точек служит плоскость, параллельная П3.
Если у точек равны две одноименные координаты, то они называются конкурирующими. Конкурирующие точки расположены на одной проецирующей прямой. На рисунке даны три пары таких точек.
Слайд 12

Прямая линия. Положение прямой линии относительно плоскостей проекций Прямая не параллельная

Прямая линия. Положение прямой линии относительно плоскостей проекций

Прямая не параллельная ни

одной плоскости проекций называется прямой общего положения
Слайд 13

Прямая линия. Положение прямой линии относительно плоскостей проекций Прямые параллельные горизонтальной

Прямая линия. Положение прямой линии относительно плоскостей проекций

Прямые параллельные горизонтальной плоскости

проекций называются горизонтальными прямыми или горизонталями. Для любой пары точек горизонтали должно быть справедливо равенство
zA=zB A2B2//0x; A3B3//0y xA–xB≠0, yA–yB≠0, zA–zB=0.
Слайд 14

Прямая линия. Положение прямой линии относительно плоскостей проекций Прямые параллельные фронтальной

Прямая линия. Положение прямой линии относительно плоскостей проекций

Прямые параллельные фронтальной плоскости

проекций называются фронтальными прямыми или фронталями.
yA=yB A1B1//0x, A3B3//0z xA–xB≠0, yA–yB=0, zA–zB≠0.
Слайд 15

Прямая линия. Положение прямой линии относительно плоскостей проекций Прямые параллельные профильной

Прямая линия. Положение прямой линии относительно плоскостей проекций

Прямые параллельные профильной плоскости

проекций называются профильными прямыми .
xA=xB A1B1//0y, A2B2//0z xA–xB=0, yA–yB≠0, zA–zB≠0.
Слайд 16

Прямая линия. Положение прямой линии относительно плоскостей проекций Прямые перпендикулярные плоскостям

Прямая линия. Положение прямой линии относительно плоскостей проекций

Прямые перпендикулярные плоскостям проекций,

занимают частное положение в пространстве и называются проецирующими. Прямая перпендикулярная одной плоскости проекций, параллельна двум другим. В зависимости от того, какой плоскости проекций перпендикулярна исследуемая прямая, различают:

Фронтально проецирующая прямая - АВ

Профильно проецирующая прямая - АВ

Горизонтально проецирующая прямая - АВ

Слайд 17

Плоскость. Способы задания плоскостей Тремя точками, не лежащими на одной прямой линии

Плоскость. Способы задания плоскостей

Тремя точками, не лежащими на одной прямой линии

Слайд 18

Плоскость. Способы задания плоскостей Прямой линией и точкой, не принадлежащей этой прямой

Плоскость. Способы задания плоскостей

Прямой линией и точкой, не принадлежащей этой прямой

Слайд 19

Плоскость. Способы задания плоскостей Двумя пересекающимися прямыми

Плоскость. Способы задания плоскостей

Двумя пересекающимися прямыми

Слайд 20

Плоскость. Способы задания плоскостей Двумя параллельными прямыми

Плоскость. Способы задания плоскостей

Двумя параллельными прямыми

Слайд 21

Положение плоскости относительно плоскостей проекций Профильная плоскость - плоскость, параллельная профильной

Положение плоскости относительно плоскостей проекций

Профильная плоскость - плоскость,
параллельная профильной плоскости

проекций
(a//П3), (a^П1, a^П2). Геометрический объект,
принадлежащий этой плоскости проецируется на
плоскость П3 без искажения, а на плоскости П1
и П2 в прямые - следы плоскости aП1 и aП2

Горизонтальная плоскость - плоскость,
Параллельная горизонтальной плоскости проекций
(a//П1) - (a^П2,a^П3). Геометрический объект,
Принадлежащий этой плоскости проецируется на
плоскость П1 без искажения, а на плоскости П2 и П3 в
прямые – следы плоскости aП2 и aП3

Фронтальная плоскость - плоскость, параллельная
фронтальной плоскости проекций (a//П2), (a^П1, a^П3).
Геометрический объект, принадлежащий этой плоскости
проецируется на плоскость П2 без искажения, а на
плоскости П1 и П3 в прямые - следы плоскости aП1 и
aП3

Слайд 22

Способы преобразования чертежа Использование частных положений прямых линий и плоских фигур

Способы преобразования чертежа

Использование частных положений прямых линий и плоских фигур относительно


плоскостей проекций значительно упрощает построение чертежа и позволяет
отобразить натуральные размеры прямых линий, плоских фигур, расположенных
на одной плоскости проекций, и расстояний между ними. Для такого
преобразования чертежа используют:
1). Введение дополнительных плоскостей проекций таким образом, чтобы прямая
линия или плоская фигура, не изменяя своего положения в пространстве,
оказалась в каком-либо частном положении в новой системе плоскостей
проекций — способ перемены плоскостей проекций;
2). Изменение положения прямой линии или плоской фигуры посредством
поворота вокруг некоторой оси таким образом, чтобы прямая или плоская фигура
оказалась в частном положении относительно неизменной системы плоскостей
проекций — способ вращения.
Преобразование чертежа (для достижения необходимого результата) при
определении натуральных размеров отрезков и углов может осуществляться
многократно одним или разными способами.
Слайд 23

Способы преобразования чертежа. Метод вращения вокруг оси, перпендикулярной плоскости проекций Траектория

Способы преобразования чертежа. Метод вращения вокруг оси, перпендикулярной плоскости проекций

Траектория -

дуга окружности, центр которой находится на оси перпендикулярной плоскости проекций. Для определения натуральной величины отрезка прямой общего положения АВ, выберем ось вращения перпендикулярную горизонтальной плоскости проекций и проходящую через В. Повернем отрезок так, чтобы он стал параллелен
фронтальной плоскости проекций (горизонтальная проекция отрезка параллельна оси x). При этом точка А переместиться в А*, а точка В не изменит своего положения. Положение проекции А*2 находится на пересечении фронтальной проекции траектории перемещения точки А (прямая линия параллельная оси x) и линии связи проведенной из проекции А*1. Полученная проекция отрезка В2 А*2 определяет его
действительные размеры.
Слайд 24

Способы преобразования чертежа. Метод замены плоскостей проекций Изменение взаимного положения изучаемого

Способы преобразования чертежа. Метод замены плоскостей проекций

Изменение взаимного положения изучаемого объекта

и плоскостей проекций достигается путем замены одной из плоскостей П1 или П2 новой плоскостями П4. Новая плоскость всегда выбирается перпендикулярно оставшейся плоскости проекций.
Для решения некоторых задач может потребоваться двойная замены плоскостей проекций. Последовательный переход от одной системы плоскостей проекций к другой необходимо осуществлять, выполняя следующее правило: расстояние от новой проекции точки до новой оси должно равняться расстоянию от заменяемой проекции точки до заменяемой оси.
Выберем новую плоскость проекций П4, параллельно отрезку АВ и перпендикулярно плоскости П1. Введением новой плоскости, переходим из системы плоскостей П1П2 в систему П1П4 , причем в новой системе плоскостей проекция отрезка А4 В4 будет натуральной величиной отрезка АВ.
Слайд 25

Дополнительная информация Более подробно ознакомиться с материалом можно: В.М. Дягтерев, В.П.

Дополнительная информация

Более подробно ознакомиться с материалом можно:
В.М. Дягтерев, В.П. Затыльникова. Инженерная

и компьютерная графика.
Главы 1-4 (стр. 3-36)
2. Мультимедийный учебник по начертательной геометрии
Слайд 26

Задание По координатам пяти точек необходимо построить комплексный чертеж треугольника АВС

Задание

По координатам пяти точек необходимо построить комплексный чертеж треугольника АВС и

прямой МN. Найти точку К пересечения прямой с плоскостью. Определить видимость прямой по отношению непрозрачной плоскости, методом конкурирующих точек. Определить методом вращения вокруг оси перпендикулярной плоскости проекций натуральную величину отрезка МК и методом замены плоскостей проекций - натуральную величину треугольника АВС.
Слайд 27

Пример выполнения работы Даны координаты точек

Пример выполнения работы

Даны координаты
точек

Слайд 28

Пример выполнения работы Строим ось Х, обозначаем плоскости

Пример выполнения работы

Строим ось Х, обозначаем
плоскости

Слайд 29

Пример выполнения работы Строим точку А, откладывая соответствующие координаты по оси

Пример выполнения работы

Строим точку А, откладывая
соответствующие координаты
по оси Х, Y, Z.

Ось Y «стремится»
вниз по вертикали, ось Z – вверх.
Слайд 30

Пример выполнения работы Аналогично строим оставшиеся точки

Пример выполнения работы

Аналогично строим
оставшиеся точки

Слайд 31

Пример выполнения работы

Пример выполнения работы

Слайд 32

Пример выполнения работы

Пример выполнения работы

Слайд 33

Пример выполнения работы Соединяем точки таким образом, чтобы получилась плоскость АВС и отрезок MN

Пример выполнения работы

Соединяем точки таким образом,
чтобы получилась плоскость АВС
и

отрезок MN
Слайд 34

Пример выполнения работы Через проекцию отрезка M2N2 проводим прямую

Пример выполнения работы

Через проекцию отрезка M2N2
проводим прямую

Слайд 35

Пример выполнения работы Определяем точки скрещивания прямой и плоскости – 1 и 2

Пример выполнения работы

Определяем точки скрещивания
прямой и плоскости – 1 и 2

Слайд 36

Пример выполнения работы

Пример выполнения работы

Слайд 37

Пример выполнения работы Строим проекции точек 1 и 2 на плоскости

Пример выполнения работы

Строим проекции точек 1 и 2
на плоскости П1.

Проводим через
эти точки отрезок, который будет
совпадать с проекцией прямой a на
плоскости П1.
Определяем точку К – точка
пересечения отрезка 12 и отрезка M1N1.
Слайд 38

Пример выполнения работы Определяем проекцию точки К на плоскости П2

Пример выполнения работы

Определяем проекцию точки К
на плоскости П2

Слайд 39

Пример выполнения работы Пусть точка 22 совпадает с точкой 32. (вспоминаем

Пример выполнения работы

Пусть точка 22 совпадает с точкой 32.
(вспоминаем про конкурирующие

точки).
Строим проекцию точки 3 на плоскости П1.
Обращаем внимание на то, что если точка
принадлежит прямой, то и проекции этой
точки также принадлежат соответствующим
проекциям прямой
Слайд 40

Пример выполнения работы По методу конкурирующих точек определяем видимость отрезка M2N2

Пример выполнения работы

По методу конкурирующих точек
определяем видимость
отрезка M2N2

Слайд 41

Пример выполнения работы Аналогично для точек 4 и 5.

Пример выполнения работы

Аналогично для точек 4 и 5.

Слайд 42

Пример выполнения работы Определяем видимость отрезка M1N1

Пример выполнения работы

Определяем видимость отрезка
M1N1

Слайд 43

Пример выполнения работы Используя метод вращения вокруг оси, определяем натуральную величину

Пример выполнения работы

Используя метод вращения вокруг
оси, определяем натуральную
величину заданного

отрезка – MK.
Пусть ось в (.)К, тогда вращаем отрезок
до тех пор, пока прямая не станет
параллельна оси х. Получаем новую
проекцию отрезка MK
Слайд 44

Пример выполнения работы Строим проекцию отрезка МК на плоскости П1.

Пример выполнения работы

Строим проекцию отрезка МК на
плоскости П1.

Слайд 45

Пример выполнения работы Проекция отрезка М’1К1 – есть натуральная величина отрезка МК

Пример выполнения работы

Проекция отрезка М’1К1 – есть
натуральная величина отрезка МК

Слайд 46

Пример выполнения работы Определяем натуральную площадь плоскости АВС по методу замены

Пример выполнения работы

Определяем натуральную
площадь плоскости АВС по методу
замены плоскостей
Через

одну из вершин проекции А2В2С2
проводим горизонталь h2
Слайд 47

Пример выполнения работы Строим проекцию горизонтали на плоскости П1

Пример выполнения работы

Строим проекцию горизонтали
на плоскости П1

Слайд 48

Пример выполнения работы Вводим новую плоскость П4 таким образом, чтобы новая

Пример выполнения работы

Вводим новую плоскость П4 таким
образом, чтобы новая ось

х была
перпендикулярна проекции
горизонтали h1
Слайд 49

Пример выполнения работы Строим на плоскости П4 проекции точек А, В,

Пример выполнения работы

Строим на плоскости П4
проекции точек А, В, С,

сохраняя
их координаты по оси Z.
Слайд 50

Пример выполнения работы Соединяем точки. Если все правильно делали, треугольник АВС должен проецироваться в прямую

Пример выполнения работы

Соединяем точки. Если все правильно
делали, треугольник АВС должен


проецироваться в прямую
Слайд 51

Пример выполнения работы Вводим новую плоскость П5, для которой ось Х будет параллельно Проекции А4В4С4

Пример выполнения работы

Вводим новую плоскость П5, для
которой ось Х будет

параллельно
Проекции А4В4С4
Слайд 52

Пример выполнения работы Аналогично строим проекцию треугольника АВС на плоскости П5

Пример выполнения работы

Аналогично строим
проекцию
треугольника АВС
на плоскости П5