Тепловые двигатели. Парогазовые установки

Содержание

Слайд 2

Содержание Парогазовые установки Турбонагнетатели Турбодетандоры Транспортные ГТУ Турбовинтовые двигатели Турбореактивные двигатели

Содержание

Парогазовые установки
Турбонагнетатели
Турбодетандоры
Транспортные ГТУ
Турбовинтовые двигатели
Турбореактивные двигатели

Слайд 3

Парогазовые установки Парогазовая установка — электрогенерирующая станция, служащая для производства электроэнергии.

Парогазовые установки

Парогазовая установка — электрогенерирующая станция, служащая для производства электроэнергии.
Парогазовая

установка содержит два отдельных двигателя: паросиловой и газотурбинный. В газотурбинной установке турбину вращают газообразные продукты сгорания топлива. Топливом может служить как природный газ, так и продукты нефтяной промышленности (дизельное топливо). На одном валу с турбиной находится генератор, который за счет вращения ротора вырабатывает электрический ток. Проходя через газовую турбину, продукты сгорания отдают лишь часть своей энергии и на выходе из неё, когда их давление уже близко к наружному и работа не может быть ими совершена, все ещё имеют высокую температуру. С выхода газовой турбины продукты сгорания попадают в паросиловую установку, в котел-утилизатор, где нагревают воду и образующийся водяной пар. Температура продуктов сгорания достаточна для того, чтобы довести пар до состояния, необходимого для использования в паровой турбине (температура дымовых газов около 500 °C позволяет получать перегретый пар при давлении около 100 атмосфер). Паровая турбина приводит в действие второй электрогенератор.

Содержание

Слайд 4

Преимущества и недостатки Преимущества Парогазовые установки позволяют достичь электрического КПД более

Преимущества и недостатки

Преимущества

Парогазовые установки позволяют достичь электрического КПД более 60 %.

Для сравнения, у работающих отдельно паросиловых установок КПД обычно находится в пределах 33-45 %, для газотурбинных установок — в диапазоне 28-42 %
Низкая стоимость единицы установленной мощности
Парогазовые установки потребляют существенно меньше воды на единицу вырабатываемой электроэнергии по сравнению с паросиловыми установками
Короткие сроки возведения (9-12 мес.)
Нет необходимости в постоянном подвозе топлива ж/д или морским транспортом
Компактные размеры позволяют возводить непосредственно у потребителя (завода или внутри города), что сокращает затраты на ЛЭП и транспортировку эл. энергии
Более экологически чистые в сравнении с паротурбинными установками

Недостатки

Необходимость осуществлять фильтрацию воздуха, используемого для сжигания топлива.
Ограничения на типы используемого топлива. Как правило в качестве основного топлива используется природный газ, а резервного — дизельное топливо. Применения угля в качестве топлива возможно только в установках с внутрицикловой газификацией угля, что сильно удорожает строительство таких электростанций. Отсюда вытекает необходимость строительства недешевых коммуникаций транспортировки топлива — трубопроводов.
Сезонные ограничения мощности. Максимальная производительность в зимнее время.

Содержание

Слайд 5

Содержание

Содержание

Слайд 6

Турбонагнетатели Турбокомпрессоры, или турбонагнетатели — устройства с приводом, осуществляемым от энергии

Турбонагнетатели

Турбокомпрессоры, или турбонагнетатели — устройства с приводом, осуществляемым от энергии выхлопных

газов.
Поток отработанных газов, имеющих значительную температуру и давление, через выпускной коллектор поступает в корпус турбины. За счёт давления газов на лопасти колесо турбины вращается (около 15-30 000 об/мин у крупных ТК, до 100 000 об/мин у ТК легковых автомобилей), а поскольку оно напрямую соединено валом с колесом компрессора – компрессор также начинает крутиться, нагнетая воздух во впускной коллектор.
Вал турбокомпрессора вращается в подшипниках, смазываемых маслом под давлением от системы смазки двигателя. Для двигателей небольшой мощности в турбокомпрессорах используют золотниковый механизм. Большая часть отработанных газов поступает через золотник, поступает на турбину, а остаток газов через специальный канал в кожухе обходит колесо турбины. Из-за большого давления воздух сильно нагревается, для его охлаждения был разработан интеркулер.

Содержание

Слайд 7

Содержание

Содержание

Слайд 8

Турбодетандоры Дета́ндер — устройство, преобразующее потенциальную энергию газа в механическую энергию.

Турбодетандоры

Дета́ндер — устройство, преобразующее потенциальную энергию газа в механическую энергию. При

этом газ, совершая работу, охлаждается. Используется в цикле получения жидких газов, таких как кислород, водород и гелий. Наиболее распространены поршневые детандеры и турбодетандеры.
Основное применение турбодетандеры нашли в технологических процессах получения жидкого водорода, кислорода, воздуха, азота и других криогенных газов. Однако сегодня турбодетандеры начинают применяться в процессах утилизации энергии дросселируемого природного газа на газораспределительных станциях и газорегуляторных пунктах при распределении газа, транспортируемого по магистральным газопроводам. Также турбодетандер — турбохолодильник, ТХ — важный компонент системы кондиционирования воздуха любого высотного реактивного или турбовинтового самолёта

Содержание

Слайд 9

Содержание

Содержание

Слайд 10

Газотурбинная установка (ГТУ) Газотурбинная установка (ГТУ) — энергетическая установка: конструктивно объединённая

Газотурбинная установка (ГТУ)

Газотурбинная установка (ГТУ) — энергетическая установка: конструктивно объединённая

совокупность газовой турбины, электрического генератора, газовоздушного тракта, системы управления и вспомогательных устройств (пусковое устройство, компрессор, теплообменный аппарат или котёл-утилизатор для подогрева сетевой воды для промышленного снабжения)
Газотурбинная установка состоит из двух основных частей: силовая турбина и электрический генератор, которые размещаются в одном корпусе. Поток газа высокой температуры воздействует на лопатки силовой турбины (создает крутящий момент). Использование тепла посредством теплообменника или котла-утилизатора обеспечивает увеличение общего КПД установки.
ГТУ может работать как на жидком, так и на газообразном топливе[1]: в обычном рабочем режиме — на газе, а в резервном (аварийном) — автоматически переключается на дизельное топливо. Оптимальным режимом работы газотурбинной установки является комбинированная выработка тепловой и электрической энергии. ГТУ в энергетике работают как в базовом режиме, так и для покрытия пиковых нагрузок.

Содержание

Слайд 11

В настоящее время газотурбинные установки начали широко применяться в малой энергетике

В настоящее время газотурбинные установки начали широко применяться в малой энергетике
ГТУ

предназначены для эксплуатации в любых климатических условиях как основной или резервный источник электроэнергии и тепла для объектов производственного или бытового назначения. Области применения газотурбинных установок практически не ограничены: нефтегазодобывающая промышленность, промышленные предприятия, муниципальные образования.
Блочно-модульное исполнение ГТУ обеспечивает высокий уровень заводской готовности газотурбинных электростанций. Степень автоматизации газотурбинной электростанции позволяет отказаться от постоянного присутствия обслуживающего персонала в блоке управления. Контроль работы станции может осуществляться с главного щита управления, дистанционно.

Содержание

Слайд 12

Содержание

Содержание

Слайд 13

Турбовинтово́й дви́гатель Турбовинтово́й дви́гатель — тип газотурбинного двигателя, в котором основная

Турбовинтово́й дви́гатель

Турбовинтово́й дви́гатель — тип газотурбинного двигателя, в котором основная

часть энергии горячих газов используется для привода воздушного винта через понижающий частоту вращения редуктор, и лишь небольшая часть энергии составляет выхлоп реактивной тяги. Наличие понижающего редуктора обусловлено необходимостью преобразования мощности: турбина — высокооборотный агрегат с малым крутящим моментом, в то время как для вала воздушного винта требуются относительно малые обороты, но большой крутящий момент.
Существуют две основные разновидности турбовинтовых двигателей: двухвальные, или со свободной турбиной (наиболее распространенные в настоящее время), и одновальные. В первом случае между газовой турбиной (называемой в этих двигателях газогенератором) и трансмиссией не существует механической связи, и привод осуществляется газодинамическим способом. Воздушный винт не находится на общем валу с турбиной и компрессором. Турбин в таком двигателе две: одна приводит в движение компрессор, другая (через понижающий редуктор) — винт. Такая конструкция имеет ряд преимуществ, в том числе и возможность работы силового агрегата самолёта на земле без передачи на воздушный винт (в этом случае используется тормоз воздушного винта, а работающий газотурбинный агрегат обеспечивает самолёт электрической мощностью и воздухом высокого давления для бортовых систем).
Если учесть, что турбовинтовой двигатель работает только на дозвуковых скоростях, а турбореактивные двигатели лучше использовать для получения очень больших скоростей полёта, то можно сделать вывод, что в некотором диапазоне скоростей комбинирование этих двух двигателей является оптимальным решением (турбовентиляторный двигатель).

Содержание

Слайд 14

Содержание

Содержание

Слайд 15

Турбореактивные двигатели Турбореактивный двигатель — воздушно-реактивный двигатель (ВРД), в котором сжатие

Турбореактивные двигатели

Турбореактивный двигатель — воздушно-реактивный двигатель (ВРД), в котором сжатие рабочего

тела на входе в камеру сгорания и высокое значение расхода воздуха через двигатель достигается за счёт совместного действия встречного потока воздуха и компрессора, размещённого в тракте ТРД сразу после входного устройства, перед камерой сгорания.
Компрессор втягивает воздух, сжимает его и направляет в камеру сгорания. В ней сжатый воздух смешивается с топливом, воспламеняется и расширяется. Расширенный газ заставляет вращаться турбину, которая расположена на одном валу с компрессором. Остальная часть энергии направляется в сужающее сопло, образуя реактивную тягу, которая является основной движущей силой.
ТРД наиболее активно развивались в качестве двигателей для всевозможных военных и коммерческих самолётов до 70-80-х годов XX века. В настоящее время ТРД потеряли значительную часть своей ниши в авиастроении, будучи вытесненными более экономичными двухконтурными ТРД.

Содержание