Free Radical Polymerization

Содержание

Слайд 2

A. Type of polymerization. 6. 1 Introduction Free-radical polymerization Ionic polymerization Complex coordination polymerization

A. Type of polymerization.

 6. 1 Introduction

Free-radical polymerization
Ionic polymerization
Complex coordination

polymerization
Слайд 3

B. Commercialized free-radical polymerization.

B. Commercialized free-radical polymerization.

Слайд 4

6.2 Free Radical Initiators. 6.2.1 Peroxides and Hydroperoxides A. Benzoly peroxide

6.2 Free Radical Initiators.

 6.2.1 Peroxides and Hydroperoxides
A. Benzoly

peroxide and other peroxides
a. Thermal decomposition of BPO.

b. Half-life of benzoyloxy radical : 30 min at 100℃
c. Cage effect : confining effect of solvent molecules.

Слайд 5

d. Other peroxides. Diacetyl peroxide Di-t-butyl peroxide Diacetyl peroxide Di-t-butyl peroxide

d. Other peroxides.

Diacetyl peroxide      Di-t-butyl peroxide
  Diacetyl peroxide      Di-t-butyl

peroxide
                          (half-life:10hours at 120℃)

 6.2.1 Peroxides and Hydroperoxides

Слайд 6

e. Promoters : Inducing initiation at lower temperature. (6.9) (6.10) +

e. Promoters : Inducing initiation at lower temperature.

(6.9)

(6.10)

+

+

+

-

 6.2.1 Peroxides and

Hydroperoxides
Слайд 7

B. Hydroperoxide a. Thermal decomposition hydroperoxide b. Cumyl hydroperoxide. 6.2.1 Peroxides and Hydroperoxides

B. Hydroperoxide
a. Thermal decomposition hydroperoxide

 b. Cumyl hydroperoxide.

 6.2.1 Peroxides

and Hydroperoxides
Слайд 8

A. α,α'-Azobis(isobutyronitrile) (AIBN). a. Decomposition of AIBN. b. Half-life of isobutyronitrile


A. α,α'-Azobis(isobutyronitrile) (AIBN).
a. Decomposition of AIBN.

b. Half-life of isobutyronitrile

radical : 1.3 hours at 80℃.

6.2.2 Azo Compounds.

Слайд 9

B. Side reaction : Cage effect. a. Tetramethylsuccinonitrile b. Ketenimine 6.2.2 Azo Compounds.

B. Side reaction : Cage effect.
a. Tetramethylsuccinonitrile

b. Ketenimine                

6.2.2

Azo Compounds.
Слайд 10

A. One electron transfer reaction. a. Making free radical by one

  A. One electron transfer reaction.
a. Making free radical by

one electron transfer by redox reaction.
  b. Low-temperature reaction.
 c. Emulsion polymerization.

B. Example of redox system.

6.2.3 Redox Initiators.

Слайд 11

A. Peroxide and Azo compound. Photolysis and thermalysis. B. Photolabile initiator. 6.2.4 Photoinitiator

A. Peroxide and Azo compound.
Photolysis and thermalysis.

B. Photolabile initiator.


6.2.4 Photoinitiator

Слайд 12

A. Polymerization without initiators. a. Dimer formation by Diels-Alder reation. 11

A. Polymerization without initiators.
a. Dimer formation by Diels-Alder reation.

11

12

·

b.

Radical formation from dimer.

·

6.2.5 Thermal Polymerization.

Слайд 13

6.2.6 Electrochemical Polymerization. A. Polymerization of electrolysis. a. Cathode reaction :

6.2.6 Electrochemical Polymerization.

A. Polymerization of electrolysis.

  a. Cathode reaction

:
electron transfer to monomer ion forming radical anion (6.22)
b. Anode reaction :
electron transfer to anode forming radical cation (6.23) 
B. Coating metal surfaces with polymers.
Слайд 14

6.3 Techniques of Free Radical Polymerization.

 6.3 Techniques of Free Radical Polymerization.

Слайд 15

6.3 Techniques of Free Radical Polymerization. 6.3.1 Bulk A. Reactor charges.

 6.3 Techniques of Free Radical Polymerization.

 6.3.1 Bulk
A. Reactor charges.


a. Monomer.
b. Initiator (soluble in monomer).
B. Problems.
a. Heat transfer.
 b. Viscosity.
c. Auto-acceleration.
Слайд 16

6.3.2 Suspension. A. Reactor charges. a. Monomer. b. Initiator (soluble in

 6.3.2 Suspension.

A. Reactor charges.
 a. Monomer.
b. Initiator (soluble in

monomer).
c. Water or other liquid.
d. Stabilizer: Poly(vinyl alcohol), CMC
B. Vigorously stirring to keep suspension.
Слайд 17

6.3.3 Solution. A. Reactor charges. a. Monomer (soluble in solvent). b.

6.3.3 Solution.

A. Reactor charges.
a. Monomer (soluble in solvent).
b.

Initiator (soluble in solvent).
c. Solvent.
B. Refluxing solution.
Слайд 18

6.3.4 Emulsion. A. Reactor charges. a. Monomer. b. Redox initiator c.

 6.3.4 Emulsion.

A. Reactor charges.
a. Monomer.
 b. Redox initiator
 c.

Soap or emulsifier.
 d. Water.
 e. Others (cf. Table 6.3).
B. Polymerization in swollen micelle.
  Latex products.
Слайд 19

6.3.4 Emulsion. TABLE 6.3. Typical Emulsion Polymerization Recipesa Ingredients, Conditions Ingredients

 6.3.4 Emulsion.

TABLE 6.3. Typical Emulsion Polymerization Recipesa

Ingredients, Conditions
Ingredients (parts by

weight)
Water
Butadiene
Styrene
Ethyl acrylate
2-Chloroethyl vinyl ether
p-Divinylbenzene
Soap
Potassium persulfate
1-Dodecanethiol
Sodium pyrophosphate
Conditions
Time
Temperature
Yield

aRecipes from Cooper.23
bSodium lauryl sulfate.

190
70
30
-
-
-
5
0.3
0.5
-
12hr
50oC
65%

Styrene-Buradiene
Copolymer

Polyacrylate
Latex

133
-
-
93
5
2
3b
1
-
0.7
8hr
60oC
~100%

Слайд 20

6.4 Kinetic and Mechanism of polymerization. A. Mechanism of free-radical polymerization.

6.4 Kinetic and Mechanism of polymerization.

A. Mechanism of free-radical polymerization.


a. Initiation.
1) Decomposition.
     Initiator → 2R․
2) Addition.

(6.25)

Слайд 21

b. Propagation. (6.26) 1) Head-to-tail orientation : predominant reaction. Steric and

b. Propagation.

(6.26)

 1) Head-to-tail orientation : predominant reaction.
      Steric and electronic

effects.
2) Examples of not exclusively head-to-tail orientation.

(13-17% of head to head)   (5-6% of head to head)   (19% of head to head)

6.4 Kinetic and Mechanism of polymerization.

Слайд 22

c. Termination. 1) Combination. (6.27) Polystyrene radical. (6.29) 6.4 Kinetic and Mechanism of polymerization.

 c. Termination.
1) Combination.

(6.27)

Polystyrene radical.

(6.29)

6.4 Kinetic and Mechanism of

polymerization.
Слайд 23

2) Disproportionation. Poly(methyl methacrylate) radical. ① Repulsion of ester group. ②

 2) Disproportionation.

Poly(methyl methacrylate) radical.

① Repulsion of ester group.


    ② Easy alpha hydrogen abstraction.
3) Acrylonitrile : Combination virtually exclusively at 60℃.
4) Poly(vinyl acetate) : Disproportionation.

6.4 Kinetic and Mechanism of polymerization.

Слайд 24

B. Kinetic of free radical polymerization. a. Assumption. 1) The rates

B. Kinetic of free radical polymerization.
a. Assumption.
1) The

rates of initiation, propagation, and termination are all different.
  2) Independent of chain length.
  3) Negligible end group.
  4) At steady state, constant radical concentration.
    (steady state assumption)

 b. Initiation (Ri)
f : Initiator efficiency.
kd : Decomposition rate constant.
  [I] : molar concentration of initiator.
 [M ·] : molar concentration of radical.

Слайд 25

c. Termination rate ( Rt ) d. Propagation rate ( Rp

 c. Termination rate ( Rt )
d. Propagation rate ( Rp

)
Steady state assumption.

kt = ktc+ ktd

Ri=Rt

B. Kinetic of free radical polymerization.

Слайд 26

e. Average kinetic chain length ( ) ν B. Kinetic of free radical polymerization.

e. Average kinetic chain length ( )

ν

B. Kinetic of free

radical polymerization.
Слайд 27

f. Gel effect : Trommsdorff effect, Norris-smith effect. 1) Difficult termination

 f. Gel effect : Trommsdorff effect, Norris-smith effect.
1) Difficult termination

reaction because of viscosity.
2) Ease propagation reaction because monomer size is small,
     even though high viscosity.
3) Autoacceleration by exotherm of propagation reaction.
4) To obtain extraordinary high molecular weight polymer like gel.

B. Kinetic of free radical polymerization.

Слайд 28

by hydrogen abstracting. Lowering average kinetic chain length. a. Growing radicals

   by hydrogen abstracting.
   Lowering average kinetic chain length.
a. Growing radicals

move to other polymer chain.

b. Backbiting self polymer chain.

 LDPE : branching polymer.

(6.33)

C. Chain transfer reactions : Growing radicals move to other parts

Слайд 29

c. Moving to initiators or monomers. d. Moving to solvent. (6.34)

 c. Moving to initiators or monomers.

 d. Moving to solvent.

(6.34)

(6.35)

(6.36)

(6.37)

C.

Chain transfer reactions
Слайд 30

e. Moving to chain transfer agent. Ct : Chain transfer constant.

e. Moving to chain transfer agent.

  
  Ct : Chain

transfer constant.
    [T] : Concentration of chain transfer agent.
f. Telomerization : At high concentration of transfer agent, ktr>kp.
    Low-molecular-weight polymers are obtained.
              (Telomer)

(6.39)

C. Chain transfer reactions

Слайд 31

a. Copper(I) bypyridyl(bpy) complex: b. TEMPO (18) : 2,2,6,6-tetramethylpiperidinyl-1-oxy. (6.42) (6.43)

 
a. Copper(I) bypyridyl(bpy) complex: 

 b. TEMPO (18) : 2,2,6,6-tetramethylpiperidinyl-1-oxy.

(6.42)

(6.43)

(6.44)

(6.45)

D. Leaving

free radical polymerization : Atom transfer polymerization.
Слайд 32

c. Synthesis of block copolymers like anionic polymerization. d. Monodisperse polymerization

 c. Synthesis of block copolymers like anionic polymerization.
 d. Monodisperse polymerization

(PI=1.05).
E. Kinetics of Emulsion polymerization.
a.     
N : the number of particles.
b.   

6.4 Kinetic and Mechanism of polymerization.

Слайд 33

6.5 Stereochemistry of polymerization. A. General consideration. a. Stereoregular polymerization :

6.5 Stereochemistry of polymerization.
A. General consideration.
a. Stereoregular polymerization :

Ionic and complex coordination  
   polymerization.
   1) Terminal ion pair : counter ion.
   2) Terminal complex active site.
   3) Low temperature.
 b. Stereo-irregular polymerization : Free-radical polymerization.
   1) No stereoregulating radical terminal group.
   2) Somewhat higher temperature.
Слайд 34

B. Factors influencing stereochemistry in free-radical polymerization. a. Interaction between the

B. Factors influencing stereochemistry in free-radical polymerization.
 a. Interaction between the

terminal chain carbon and the
   approaching monomer molecule.

C. Stereoregular free-radical polymerization of PMMA.
  (syndiotatic PMMA)
a. Polymerization temperature : below 0℃.
b.

(6.48)

6.5 Stereochemistry of polymerization.

Слайд 35

c. Terminal carbon : sp2( planar ) Penultimate repeating unit :

 c. Terminal carbon : sp2( planar )
    Penultimate repeating unit :

Bulky ester group.
d. Poly(2,4,6-triphenylbenzylmethacrylate)

1) Less syndiotatic than PMMA.
2) More polar effect than steric effect.

6.5 Stereochemistry of polymerization.

19

Слайд 36

6.6.1 Isolated Dienes A. Crosslinked or cyclopolymerization. 6.6 Polymerization of Dienes

  6.6.1 Isolated Dienes
A. Crosslinked or cyclopolymerization.

6.6 Polymerization of

Dienes
Слайд 37

A. Structure of conjugated Diene monoer. Isoprene B. a. 1,2-Addition :

A. Structure of conjugated Diene monoer.

Isoprene

B. a. 1,2-Addition :

Pendent vinyl group.

 b. Stereochemistry : isotactic, syndiotactic, atactic.

6.6.2 Conjugated Dienes.

23

25

Слайд 38

C. 1,4-Addition : Delocalized double bond a. D. 3,4-Addition E. Polymerization

C. 1,4-Addition : Delocalized double bond
a.

D. 3,4-Addition

E. Polymerization

reaction and temperature.

24

26

27

29

6.6.2 Conjugated Dienes.

Слайд 39

TABLE 6.6 Structure of Free Radical-Initiated Diene Polymersa polymerization Temperature (oC)

TABLE 6.6 Structure of Free Radical-Initiated Diene Polymersa

polymerization
Temperature (oC)
-20
20
100
233
-20
-5

50
100
257
-46
46
100

Monomer
Butadiene
Isoprene
Chloroprene

cis-1,4 trans-1,4 1,2 3,4

Percent

6
22
28
43
1
7
18
23
12
5
10
13

77
58
51
39
90
82
72
66
77
94
81-86
71

17
20
21
18
5
5
5
5
2
1
2
2.4

-
-
-
-
4
5
5
6
9
0.3
1
2.4

aData from Cooper34 p. 275.

6.6.2 Conjugated Dienes.

Слайд 40

F. s-cis and s-trans 6.6.2 Conjugated Dienes.

F. s-cis and s-trans

6.6.2 Conjugated Dienes.

Слайд 41

A. Thermodynamic feasibility. a. ΔGp = ΔHp - TΔSp ΔGp :

A. Thermodynamic feasibility.
a. ΔGp = ΔHp - TΔSp
     ΔGp

: Gibbs free energy change of polymerization.
     ΔHp : Enthalpy change of polymerization.
     ΔSp : Entropy change of polymerization.
     ΔGp < 0 : favorable free energy of polymerization.
b. Values of ΔH and ΔS for several monomers.
c. Polypropylene and isobutylene :
ΔG < 0 → unfavorable polymerization.
     because of kinetic feasibility

6.7 Monomer Reactivity

Слайд 42

6.7 Monomer Reactivity

6.7 Monomer Reactivity

Слайд 43

B. Factors of monomer reactivity in free radical polymerization. a. The

B. Factors of monomer reactivity in free radical polymerization.
a. The

stability of the monomer toward addition of a free radical.
b. The stability of the monomer radicals.

 c. Order of monomer reactivity.
    Acrylonitrile > Styrene > Vinyl acetate.
d. Order of benzoyloxy radical initiation.
    Syrene > Vinyl acetate > Acrylonitrile
    Benzoyloxy radical : Ph14CO2․

6.7 Monomer Reactivity

Слайд 44

C. The inverse relationship between monomer stability and polymerization rate. a.

C. The inverse relationship between monomer stability and
   polymerization rate.
 a.

Vinyl acetate: not Stable monomer but high rate constant.
 b. Steric and polar effects: Not clear-cut generalization.
    Lower rate constant of MMA than MA.
c. 1,2 disubstituted monomer difficult to polymerize in free radical.
     Exception: Tetrafluoroethylene.

6.7 Monomer Reactivity

Слайд 45

D. Ceiling temperature (Tc) a. b. Definition of ceiling temperature. ΔGp

D. Ceiling temperature (Tc)
a.

 b. Definition of ceiling temperature.


ΔGp = 0 : equal forward and backword reactions.

  c. High Tc : favorable polymerization.
    Low Tc : unfavorable polymerization.
   Exception : α-methylstyrene (Tc=66℃).

6.7 Monomer Reactivity

Слайд 46

A. Mechanism of copolymerization. 6.8 Copolymerization.

A. Mechanism of copolymerization.

6.8 Copolymerization.

Слайд 47

a. b. c. let, (reactivity ratio) steady state assumption. d. solving

 a. 
b. 
c. let, (reactivity ratio)
steady state assumption.
d. solving


: Copolymer equation or copolymer composition equation.
d[M1]/d[M2] : the molar ratio of the two monomers in the copolymer
[M1], [M2] : the initial molar concentration of monomers in the
            reaction mixture

B. Kinetics of copolymerization.

and

Слайд 48

a. r1 = r2 = ∞ : Homopolymer. b. r1 =


a. r1 = r2 = ∞ : Homopolymer.
b.

r1 = r2 = 0 : Alternating polymer.

 c. r1 = r2 = 1 : Copolymer composition depending on feeding
   monomers in the reaction temperature.
d. r1 × r2 = 1 :Ideal copolymerization like ideal liquid vaporization.
e. r1 × r2 > 1 : Azotropic copolymerization
(polymer composition not depending on feeding).
f. Determination of r1, r2 : Measure copolymer composition by
   NMR or other method at low conversion ( <10% )

C. Significance of reactivity ratio (r1, r2).

Слайд 49

D. Alfrey-price Q-e scheme.

D. Alfrey-price Q-e scheme.

Слайд 50

E. Charge transfer complex polymerization(alternating copolymer). a. Styrene and maleic anhydride(D-A complex).

E. Charge transfer complex polymerization(alternating copolymer).
a. Styrene and maleic anhydride(D-A

complex).