Обмен триацилглицеролов и жирных кислот

Содержание

Слайд 2

Значение изучения раздела «Обмен липидов» от 30 до 50% расходуемой энергии

Значение изучения раздела «Обмен липидов»

от 30 до 50% расходуемой энергии ежесуточно

образуются за счет липидов;
в пищевых липидах содержатся или растворяются при всасывании эссенциальные соединения (жирорастворимые витамины – А, D, Е, К, полиненасыщенные жирные кислоты – линоленовая, арахидоновая и др.);
из липидов синтезируются биологически активные соединения – гормоны стероидной природы, простагландины, витимин D;
теплоизоляционная и механическая защита организма;
основу биологических мембран составляют липиды;
в основе многих видов патологии лежат нарушения липидного обмена;
определение продуктов липидного обмена для диагностических целей используются в работе биохимических лабораторий;
некоторые производные липидов являются лекарственными веществами.
Слайд 3

Липиды Липиды – это разнообразная по строению груп-па органических молекул, имеющих

Липиды

Липиды – это разнообразная по строению груп-па органических молекул, имеющих

общие свойст-ва – гидрофобность или амфифильность.
В организме человека липиды представлены большой группой соединений: гидрофобные (триацилглицеролы -ТАГ, эфиры холестерола –ЭХ), амфифильные (есть гидрофобная часть и гидрофильная (полярная «головка») -глицерофосфолипиды, сфинголипиды.
Слайд 4

Функции липидов Участвуют в формировании мембран, напри-мер глицерофосфолипиды, сфинголипиды, холестерол; Являются

Функции липидов

Участвуют в формировании мембран, напри-мер глицерофосфолипиды, сфинголипиды, холестерол;
Являются предшественниками коферментов,

например жирорастворимый витамин К;
Образуют энергетический запас организма, выполняют функцию теплоизоляционной и механической защиты – триацилглицеролы (ТАГ)
Слайд 5

Строение и функции основных классов липидов человека

Строение и функции основных классов липидов человека

Слайд 6

Строение и функции основных классов липидов человека

Строение и функции основных классов липидов человека

Слайд 7

Строение и функции основных классов липидов человека

Строение и функции основных классов липидов человека

Слайд 8

Жирные кислоты

Жирные кислоты

Слайд 9

Слайд 10

Состав и строение жирных кислот организма человека

Состав и строение жирных кислот организма человека

Слайд 11

ТАГ (жиры) являются сложными эфирами жирных кислот и трехатомного спирта глицерола.

ТАГ (жиры) являются сложными эфирами жирных кислот и трехатомного спирта глицерола.

К 3 гидроксильным группам глицерола присоединены 3 остатка жирных кислот

Строение триацилглицеролов (ТАГ)

ТАГ – гидрофобные молекулы, различаются строением жирнокислотных радикалов (R1, R2, R3,).

Слайд 12

Переваривание и всасывание триацилглицеролов (ТАГ) (жиров) Полость тонкой кишки Переваривание жиров

Переваривание и всасывание
триацилглицеролов (ТАГ) (жиров)

Полость тонкой кишки

Переваривание жиров
(Эмульгирование, гидролиз)

Образование мицелл
и

всасывание в слизистую оболочку кишечника

Диацилглицеролы

Моноацилглицеролы

Слайд 13

Ресинтез жиров в клетках слизистой оболочки кишечника (энтероцитах)

Ресинтез жиров в клетках слизистой оболочки кишечника (энтероцитах)

Слайд 14

Переваривание и всасывание пищевых ТАГ Пищевые ТАГ Большие липидные капли Желчные

Переваривание и всасывание пищевых ТАГ

Пищевые ТАГ

Большие липидные капли

Желчные кислоты

Эмульгирование

Тонкодисперсная эмульсия

COR1
ТАГ R2OC
COR2

H2O

Панкреатическая липаза

Гидролиз

ОН
2 – МАГ R2ОС
ОН

Жирные кислоты
(RCOOH)

Желчные кислоты

Формирование смешанных мицелл

Всасывание смешанных мицелл

НО - ОН

НО - ОН

Смешанная мицелла

Тонкая кишка

Желчные кислоты

Кровь воротной вены

Желчные кислоты

2 – МАГ ТАГ Хиломикроны
(ХМ)

Другие липиды

2RCOOH 2RCOSKoA

Клетки слизистой оболочки кишечника - энтероциты

ХМ

В кровоток

В лимфатический сосуд

Слайд 15

Строение липопротеида плазмы крови Периферический апопротеин Интегральный апопротеин В-100 (или В-48)

Строение липопротеида плазмы крови

Периферический апопротеин

Интегральный апопротеин
В-100 (или В-48)

Холестерол

Фосфолипид

Эфир
холестерола

Холестерол

Липидное ядро

Триацилглицерол

Монослой из амфифильных

липидов
Слайд 16

Строение липопротеидов плазмы крови (ХМ, ЛПОНП, ЛППП, ЛПНП, ЛПВП) Периферические апопротеины

Строение липопротеидов плазмы крови
(ХМ, ЛПОНП, ЛППП, ЛПНП, ЛПВП)

Периферические апопротеины
(например, апоА-II,

апоС-II, апо-Е)

Интегральные
апопротеины
(апоВ-100 или апоВ-48)

Холестерол

Фосфолипид

Триацилглицеролы (ТАГ)

Гидрофобные липиды

Эфиры холестерола

Слайд 17

Липопротеины – транспортные формы липидов

Липопротеины – транспортные формы липидов

Слайд 18

Слайд 19

Путь экзогенных жиров и хиломикронов

Путь экзогенных жиров и хиломикронов

Слайд 20

Путь экзогенных жиров и хиломикронов Рецепторы ХМ ост. ХМ незр. ЛПВП

Путь экзогенных жиров и хиломикронов

Рецепторы

ХМ ост.

ХМ незр.

ЛПВП
апоС-II
апоЕ

Кровь

ЖК
+
Глицерол

Стенки
капилляра

Слайд 21

β – окисление жирных кислот – специфический путь катаболизма

β – окисление жирных кислот – специфический путь катаболизма

Слайд 22

R – COOH + HS-KoA + АТФ 1-й этап - Активация

R – COOH + HS-KoA + АТФ

1-й этап - Активация

жирных кислот

R – CO – S-KoA + АМФ + PPi

Жирная кислота

Ацил-КоА-синтаза

Ацил-КоА

Слайд 23

Наружная мембрана Внутренняя мембрана Цитозоль R – C ~S-KoA || O

Наружная мембрана

Внутренняя мембрана

Цитозоль

R – C ~S-KoA
||
O

HS-KoA

R – C---
||

O

R – C---
||
O

HS-KoA

R – C ~S-KoA
||
O

Карнитинацил-
трасфераза I

Карнитинацил-
трасфераза II

Карнитин

Карнитин

Матрикс

Карнитин

Карнитин

1-й этап - Перенос жирных кислот через мембраны митохондрий

Т
Р
А
Н
С
Л
О
К
А
З
А

*

Слайд 24

2-й этап – Собственно β -окисление жирных кислот О β α

2-й этап – Собственно β -окисление жирных кислот

О
β α

||
R – CH2 – CH2 – CH2 – C ~ SKoA

Ацил – КоА дегидрогеназа

О
||
R – CH2 – CH = CH – C ~ SKoA

– Ацил - КоА

FAD

FADH2

в ЦПЭ на Q

2 АТФ

– Еноил - КоА

Слайд 25

2-й этап – Собственно β -окисление жирных кислот Н2О ОН О

2-й этап – Собственно β -окисление жирных кислот

Н2О

ОН О
|

||
R – CH2 – CH – CH2 – C ~ SKoA

Еноилгидратаза

О
||
R – CH2 – CH = CH – C ~ SKoA

– Еноил - КоА

– β – Гидроксиацил - КоА

Слайд 26

2-й этап – Собственно β -окисление жирных кислот β – Гидроксиацил

2-й этап – Собственно β -окисление жирных кислот

β – Гидроксиацил –
КоА

дегидрогеназа

О О
|| ||
R – CH2 – C – CH2 – C ~ SKoA

ОН О
| ||
R – CH2 – CH – CH2 – C ~ SKoA

– β – Гидроксиацил - КоА

NAD +

NADH + H +

в ЦПЭ на FMN

3 АТФ

– β –Кетоацил - КоА

Слайд 27

2-й этап – Собственно β -окисление жирных кислот β –Кетоацил– КоА

2-й этап – Собственно β -окисление жирных кислот

β –Кетоацил–
КоА тиолаза

HSКоА

Следующий

цикл
β - окисления

О О
|| ||
R – CH2 – C – CH2 – C ~ SKoA

– β –Кетоацил - КоА

О
||
H3C– C ~ SKoA - Ацетил- КоА

в ЦТК – 3-й этап β-окисления ЖК

12 АТФ

Слайд 28

Суммарное уравнение β – окисления, например пальмитоил – КоА, может быть

Суммарное уравнение β – окисления, например пальмитоил – КоА, может быть

представлено таким образом:

С15Н31СО – КоА + 7 FAD + 7 NAD+ + 7 HSKoA

8 CH3 – CO – KoA + 7 FADH2 + 7 (NADH + H+)

12 х 8 = 96 АТФ

7 х 2 = 14 АТФ

7 х 3 = 21 АТФ

131 - 1 = 130 АТФ

Слайд 29

Синтез АТФ при полном окислении пальмитиновой кислоты.

Синтез АТФ при полном окислении пальмитиновой кислоты.

Слайд 30

Обмен жирных кислот с нечетным числом атомов углерода Метил-малонил- КоА-мутаза В12

Обмен жирных кислот с нечетным числом
атомов углерода

Метил-малонил-
КоА-мутаза

В12

Слайд 31

Окисление жирных кислот с нечетным количеством углеродных атомов

Окисление жирных кислот с нечетным количеством углеродных атомов

Слайд 32

Окисление жирных кислот с одной двойной связью Н2О 3 цикл β

Окисление жирных кислот с одной двойной связью

Н2О

3 цикл β – окисления


3 ацетил - КоА

Еноил - Коа – изомераза

Еноил - Коа – гидратаза

5 цикл β – окисления

6 ацетил - КоА

Олеоил - КоА

Цис - Δ³ - додеценонил - КоА

Транс – Δ2 - додеценонил - КоА

β – Гидрокси – деканоил - КоА

Слайд 33

Этапы β – окисления олеиновой кислоты

Этапы β – окисления олеиновой кислоты

Слайд 34

Окисление полиненасыщенных жирных кислот

Окисление полиненасыщенных жирных кислот

Слайд 35

Этапы β – окисления олеиновой кислоты

Этапы β – окисления олеиновой кислоты

Слайд 36

Этапы β – окисления олеиновой кислоты

Этапы β – окисления олеиновой кислоты

Слайд 37

Биосинтез насыщенных жирных кислот

Биосинтез насыщенных жирных кислот

Слайд 38

Отличия биосинтеза жирных кислот от их окисления Процесс протекает в цитоплазме

Отличия биосинтеза жирных кислот
от их окисления

Процесс протекает в цитоплазме клетки
Идет

с потреблением энергии за счет АТФ
Требует НАДФН Н+, который образуется в пентозофосфатном пути окисления глюкозы или при работе малик-фермента
Необходимо «стартовое» соединение
малонил-КоА
Слайд 39

Происхождение субстратов для синтеза жирных кислот и ТАГ Глюкоза Глюкозо –

Происхождение субстратов для синтеза жирных кислот и ТАГ

Глюкоза

Глюкозо – 6 -

фосфат

Фруктозо– 6 - фосфат

Глицерол – 3 фосфат

NADP+

ПФПуть

Глюкозо – 6 фосфат ДГ

Пируват

ДАФ ГАФ

NADPН+Н+

NADP+

Митохондриальная мембрана

ПДК

Малат

АТФ

Малик - фермент

Оксалоацетат

Карбоксилаза

Ацетил - КоА

Цитратлиаза

Ацетил - КоА

Оксалоацетат

Цитрат

Жирная кислота

Малонил - КоА

Ацетил- КоА

Пальмитоил-синтетаза

ТАГ

Холестерол

α - Кетоглутарат

Изоцитрат

Сукцинат

Фумарат

Малат

↓ ↓ V

↑ NADN/NAD+
↑ АТФ/АДФ

Сукцинил - КоА

Изоцитратдегидрогеназа

ЦИТОЗОЛЬ

↓ Vцтк

Цитрат

Слайд 40

NADH + H+ NAD+ 1-й этап Перенос ацетильных остатков из митохондрий

NADH + H+
NAD+

1-й этап Перенос ацетильных остатков из митохондрий в

цитозоль

Цитозоль

Митохондрия

Глюкоза

Пируват

Пируват

Оксалоацетат

Малат

Оксалоацетат

Цитрат

Цитрат

Ацетил - КоА

Ацетил - КоА

NADРH + H+
NADР+

Цитратсинтаза

Цитрат-
лиаза

Малик-фермент

Слайд 41

Жирные кислоты синтезируются из ацетил – КоА, который образуется при аэробном

Жирные кислоты синтезируются из ацетил – КоА, который образуется при аэробном

окислении глюкозы. Роль переносчика ацетильных групп из митохондрий выполняет цитрат, который в цитоплазме расщепляется на ацетил- КоА и оксалоацетат.

Синтез жирной кислоты

Оксалоацетат

Цитрат

Слайд 42

В цитоплазме ацетил–КоА карбоксилируется и превращается в малонил–КоА – второй субстрат,

В цитоплазме ацетил–КоА карбоксилируется и превращается в малонил–КоА – второй субстрат,

необходимый для образования жирной кислоты.

2-й этап Синтез малонил-КоА

Слайд 43

3-й этап Синтез пальмитиновой кислоты 1 HS - KoA HOOC –

3-й этап Синтез пальмитиновой кислоты

1

HS - KoA

HOOC – CH2 – CО

~ SKoA Малонил-КоА

HS - KoA

Слайд 44

Синтез пальмитиновой кислоты СО2 Реакция конденсации 2

Синтез пальмитиновой кислоты

СО2

Реакция конденсации

2

Слайд 45

Синтез пальмитиновой кислоты Реакция восстановления NADPH + H+ NADP+ 3 Синтез пальмитиновой кислоты

Синтез пальмитиновой кислоты

Реакция восстановления

NADPH + H+

NADP+

3

Синтез пальмитиновой кислоты

Слайд 46

Синтез пальмитиновой кислоты H2O Реакция дегидратации 4

Синтез пальмитиновой кислоты

H2O

Реакция дегидратации

4

Слайд 47

Синтез пальмитиновой кислоты Реакция восстановления 5 NADP+ NADPH + H+

Синтез пальмитиновой кислоты

Реакция восстановления

5

NADP+

NADPH + H+

Слайд 48

Синтез пальмитиновой кислоты I цикл 6 НSKoA

Синтез пальмитиновой кислоты

I цикл

6

НSKoA

Слайд 49

7 CO2 Синтез пальмитиновой кислоты

7

CO2

Синтез пальмитиновой кислоты

Слайд 50

Пальмитиновая кислота (пальмитат) Пальмитоил - Е Н2О Е Синтез пальмитиновой кислоты

Пальмитиновая кислота (пальмитат)

Пальмитоил - Е

Н2О

Е

Синтез пальмитиновой кислоты

Слайд 51

Ацетил - КоА + 7 Малонил – КоА + 14 (NADHPH

Ацетил - КоА + 7 Малонил – КоА + 14 (NADHPH

+ H+)

C15H31COOH + 7 CO2 + 8 HS – KoA + 14 NADP+ +7 H2O

Суммарное уравнение синтеза
пальмитиновой кислоты

Пальмитиновая кислота используется для синтеза других жирных кислот - насыщенных (миристиновой, стеариновой) и моноеновых (пальмитоолеиновой, олеиновой)

Слайд 52

Цитрат Пальмитоил - КоА Неактивные протомеры Ацетил – КоА карбоксилазы мРНК

Цитрат

Пальмитоил - КоА

Неактивные протомеры
Ацетил – КоА карбоксилазы

мРНК

ДНК

↑ V транскрипции (инсулин)

Активная


(Е – ОН)

Ацетил –КоА карбоксилаза

Неактивная
(Е – ОР)
Ацетил – КоА карбоксилаза

Регуляция активности
ацетил – КоА - карбоксилазы

Адреналин

Глюкагон

ПКА

АТФ

АДФ

ФПФ

Pi

H2O

Слайд 53

Биосинтез триацилглицеролов

Биосинтез триацилглицеролов

Слайд 54

Глюкоза Н2С – ОН | С = О | Н2С –

Глюкоза

Н2С – ОН
|
С = О
|
Н2С – О

– РО3²ˉ

Дигидрокси-
ацетонфосфат

NADH + H+

NAD +

Глицерол – 3 фосфат-дегидрогеназа

Н2С – ОН
|
НС – ОН
|
Н2С – ОН

Глицерол

Глицеролкиназа

АТФ

АДФ

В жировой ткани и печени

Н2С – ОН
|
НС – ОН
|
Н2С – О – РО3²ˉ

Глицерол -3- фосфат

E1

E2

O
||
R1C~ SKoA

HS - KoA

O
||
R2C~ SKoA

HS - KoA
В кишечнике и печени

Синтез триацилглицеролов в кишечнике, печени и жировой ткани