Иммунохимические методы детекции

Содержание

Слайд 2

Слайд 3

Слайд 4

Слайд 5

Слайд 6

Слайд 7

Слайд 8

Слайд 9

Слайд 10

Слайд 11

Слайд 12

Слайд 13

Слайд 14

Слайд 15

Слайд 16

Слайд 17

Слайд 18

Слайд 19

Слайд 20

Слайд 21

Слайд 22

Слайд 23

Слайд 24

Слайд 25

Слайд 26

Слайд 27

Слайд 28

Слайд 29

Слайд 30

Слайд 31

Слайд 32

Перенос антигенов в буферном растворе Влажный или полусухой перенос антигенов на мембрану

Перенос антигенов
в буферном растворе

Влажный или полусухой перенос
антигенов на мембрану

Слайд 33

How it Works Traditional western blotting takes a variety of formats

How it Works

Traditional western blotting takes a variety of formats and

reagent conditions to accomplish. It’s a passive process!
SNAP i.d. actively drives reagents through the membrane to increase the quality of the blots and increase the speed of immunodetection!
It’s a combination of reagent flows and concentrations

Vs.

Standard ‘rocking’ of reagents

Actively drive reagents with vacuum flow

Слайд 34

How it Works – reagent flows Gentle Rocking Reagents diffuse slowly

How it Works – reagent flows

Gentle Rocking

Reagents diffuse
slowly into membrane

Reagents rapidly
driven

into membrane

Standard

Vacuum

Reagents penetrate more of the membrane 3D structure where the proteins are blotted.
Result = Increase quality of the blot in a SNAP!

Слайд 35

Standard vs. SNAP i.d. - concentrations Concentrations Blocking concentrations are limited

Standard vs. SNAP i.d. - concentrations

Concentrations
Blocking concentrations are limited to prevent

clogging of blot holder
Antibody concentrations are increased to speed up reaction kinetics
Слайд 36

Compatible Blocking Reagents and Recommended Concentrations From page 8 of the SNAP i.d. User Guide

Compatible Blocking Reagents and Recommended Concentrations

From page 8 of the SNAP

i.d. User Guide
Слайд 37

How it Works – reagent flows Blocking Efficient coverage of membrane

How it Works – reagent flows

Blocking
Efficient coverage of membrane which yields

higher sensitivity
Can use 1/10th-1/100th less concentrated blocking solution to minimize overblocking
Actively driven vacuum flow coats inner surfaces of membrane in 20 sec

GAPDH

5%NFDM

0.5% NFDM

0.1% NFDM

0.05% NFDM

Standard

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Слайд 38

1° Antibody Addition & Incubation Washing 2° Antibody Addition & Incubation

1° Antibody
Addition &
Incubation

Washing

2° Antibody
Addition &
Incubation

Washing

Blocking

1 Hr

1 Hr-overnight

15 min

1 Hr

15 min

How it

Works: Time savings

Western Blotting Protocol

20 sec

10 min

1 min

10 min

1 min

Standard

Electro-
phoresis

Membrane
Transfer

Blocking

Antibody
Addition

Detection

Sample
Prep

SNAP i.d.™

22 min

4 Hrs

Vs.

Слайд 39

Слайд 40

Слайд 41

Слайд 42

Fig. 1. The diffusion dependence of solid-phase immunoassay and methods used

Fig. 1. The diffusion dependence of solid-phase immunoassay and methods used

to reduce
its influence. (A) The effect of vortexing (shaking) microtiters wells on establishment of
equilibrium (from ref. 13). (B) Illustration of the physical effect of vortexing microtiter wells
(rotary agitation) on the distribution of the fluid phase relative to the solid phase. The fluid
phase is depicted by wavy lines. (C) Alternative methods of confining the reaction volume to
within close proximity to the solid phase bearing the immobilized reactant.
Слайд 43

Слайд 44

Слайд 45

Слайд 46

Слайд 47

Слайд 48

Слайд 49

Методы коньюгации – иммобилизации антител на квантовых наночастицах

Методы коньюгации – иммобилизации антител
на квантовых наночастицах

Слайд 50

Иммунофлюоресцентный анализ среза ткани с использованием антител, меченных квантовыми наночастицами

Иммунофлюоресцентный анализ среза ткани
с использованием антител,
меченных квантовыми наночастицами

Слайд 51

Слайд 52

Слайд 53

Магнитные Наночастицы покрытые стрептавидином Биотинилированные антитела против токсина Меченные рутением вторые антитела против токсина

Магнитные
Наночастицы
покрытые
стрептавидином

Биотинилированные антитела
против токсина

Меченные рутением вторые
антитела против

токсина
Слайд 54

Чиповая технология с использованием сандвич варианта ИФА и стрептавидин биотиновой ститемы

Чиповая технология с использованием сандвич варианта ИФА и стрептавидин биотиновой ститемы

Иммобилизация

первых антител на чип, предпочтительнее ориентированная посадка антител
Захват антигена (зеленые шарики) антителами
Вторые специфические антитела, меченные биотином, взаимодействуют с антигеном
Создание стрептавидин-биотиновых комплексов
Образование комплекса -стрептавидин-тирамид или струптавиди Cy3, которые детектируются спектрофотометрически
Слайд 55

Слайд 56

Структура нейротоксинов клостридий и молекулярные мишени Молекулы - мишени бактериальных нейротоксинов

Структура нейротоксинов клостридий и молекулярные мишени

Молекулы - мишени бактериальных нейротоксинов клостридий

Молекула

токсина
предшественника

Претеолитическое
расщепление

Двуцепочная молекула
токсина в активной форме

TeNT

Синаптические
визикулы

Нейрональная
мембрана

Созревание токсина и переход
его в активную форму

Стрелками обозначены места расщепления эндопротеиназой токсина мембранных белков синаптических мембран.

Слайд 57

Липосомы-ПЦР иммуноанализ биотоксинов Антитела Определяемый токсин Липосомы, содержащие на поверхности рецептор

Липосомы-ПЦР иммуноанализ биотоксинов

Антитела

Определяемый токсин

Липосомы, содержащие
на поверхности
рецептор токсина
и фрагменты

ДНК внутри

Олигонуклеотидные праймены

Рецептор
токсина

Поверхность иммунопланшета

Слайд 58

Схема иммунохроматографического анализа Реагент для детекции комплексКолоидное золото-кроличьи антитела против Токсина

Схема иммунохроматографического анализа

Реагент для детекции
комплексКолоидное
золото-кроличьи антитела
против Токсина

Контрольные
антитела

Тест

антитела

Тест антитела

Контрольные
антитела

Направление потока

Место нанесения образца

Зона коньюгата

Адгезионная
мембрана

Адсорбционная
прокладка

Слайд 59

Слайд 60

Слайд 61

Слайд 62

Слайд 63

Слайд 64

Слайд 65

Слайд 66

Слайд 67

Слайд 68

Слайд 69

Слайд 70

Слайд 71

Слайд 72

Conjugated to the amino group carrying platform using tyrosinase. To assess

Conjugated to the amino group carrying platform using tyrosinase.
To assess

the orientation of immobilized antibodies, antigen binding capacity was measured with four di ere antantigen shaving molecular weight sranging from 66 to 330kDa. Forsmall antigens like albumin and CRP, highly oriented antibodies recorded as much as 1.8 ( 0.1 antigens per each immobilized antibody suggesting that at least 80% of immobilized antibodies reacted with two antigens. The multivalent binding analysis revealed that the oriented antibodies showed exceptionally strong a?nity for -10 antigens (Kd =8.6 10 mol/L). This value was 100-fold stronger than values for the partially oriented and randomly oriented antibodies and is comparable to the reported Kd values of the active antibodies. Bystrictlycontrolling orientation on an Antibiofoulingphospholipid platform, we have demonstrated that antibodyorientation improves the binding a?nity and the binding capacity of immobilized antibodies.
Слайд 73

Слайд 74

Слайд 75

Слайд 76

Слайд 77

Representative atomic force microscope images of self-assembled oligomeric DNA–STV conjugates (a)

Representative atomic force microscope images of self-assembled oligomeric DNA–STV conjugates (a)

and DNA–STV nanocircles (b).
The nanostructured conjugates form the basis of powerful reagents for IPCR assays.
Слайд 78

The evolution of immuno-PCR (IPCR): (A) the set-up of ELISA and

The evolution of immuno-PCR (IPCR): (A) the set-up of ELISA

and IPCR is similar.
Instead of an enzyme marker, such as alkaline phosphatase (left), IPCR uses amplification of attached DNA for signal generation (right). (B) Different strategies for coupling antibodies and DNA: in the initial version of IPCR2 a Streptavidin (STV)–protein A chimeric fusion protein was used for tagging the detection antibody with biotinylated DNA (I). In the universal IPCR protocol, the signal generating complex is assembled in situ by subsequent incubation steps of biotinylated detection antibody, (strept-)avidin and biotinylated DNA; either using a non-biotinylated primary and a species specific secondary antibody (II) or a directly biotinylated primary antibody (III). The introduction of pre-assembled antibody–DNA conjugates takes advantage of either species- or marker-specific secondary conjugates92 (IV) or direct conjugation of target-specific antibodies and DNA14 (V). Approaches such as phage display mediated IPCR,44 tadpoles of antibodies and DNA,38 or native chemical ligation introduce elegant ways of coupling antibodies and DNA by circumventing artificial modifications such as biotin and complex crosslinking chemistries (VI). The linkage of multiple antibodies and DNA molecules with particles, as used in the bio-barcode technology92 has led to polyvalent reagents, which allow one to connect single antibody–antigen binding events to a larger number of DNA markers (VII). (C) Comparison of the multiple steps required for the in situ stepwise reagent assembly of the classical universal IPCR approach with the simplicity of specific antibody–DNA conjugates. Note that each coupling step requires optimization of reaction parameters and leads to a loss in sensitivity.
Слайд 79

Typical results of immuno-PCR (IPCR) experiments. (A) Comparison of IPCR, the

Typical results of immuno-PCR (IPCR) experiments. (A) Comparison of IPCR, the
analogous

conventional ELISA for the detection of Rotavirus antigens.108 Note the high linearity and broad dynamic range of IPCR. (B) Comparison of different IPCR assay techniques for the detection of human TNFa: the use of target-specific antibody–DNA conjugates enables an increased sensitivity. The dark and light blue bars represent signals obtained by sequential IPCR (see Fig. 3B III) and direct IPCR with pre-assembled antibody–
DNA conjugates (see Fig. 3B V), respectively. The red curve represents signals obtained in the analogous ELISA.
Слайд 80

Statistical analysis of references reporting DNA-enhanced immunoassays: (A) summary of detection

Statistical analysis of references reporting DNA-enhanced immunoassays: (A) summary of detection

limits reported. The majority of examples revealed a maximum sensitivity in the 0.016 amol–16 amol range (1000–100 000 molecules, respectively), thus
defining the standard performance of the method. Note that the broad detection range of about ≤10 molecules2,74,102 or single cells18 up to 1010 molecules in all cases involves a significant improvement of the analogous ELISA.137,138 A typical LOD is found at approx. 1000 olecules/sample, which is in accordance with the expected theoretical kinetics of immunoassays.13 (B) Overview of the N-fold improvement of conventional ELISA by the
analogous IPCR. The sensitivity enhancement varies from 5-fold31 to up to 1 000 000 000- fold82,86 depending on the design and optimization state of the assay as well as the performance of the antibodies. The majority of studies reported a 100–1000-fold improvement in LOD. (C) Overview of the linear dynamic range of IPCR applications. While conventional ELISA typically reveals a dynamic range of two orders of magnitude in antigen oncentration, IPCR shows a significantly broader dynamic range (see also Fig. 5). In the majority of IPCR applications, the dynamic range comprised about four orders of magnitude.
Слайд 81

Comparison of the most prominent methods for the detection and quantification

Comparison of the most prominent methods for the detection and quantification

of DNA amplicons generated in DNA-enhanced immunoassays. (A) Intercalation fluorescence markers with increased specificity for double-stranded DNA, such as ethidiumbromide or SYBR greenTM, are used in gel-electrophoresis or real-time PCR analyses. Note that for multiplex IPCR, it is necessary to separate amplicons of different length by gel-ectrophoresis while multiplex real-time detection can not be performed using intercalation marks. (B) Different types of sequence-specific fluorophore-labeled nucleic acid probes, e.g. TaqManTM or ScorpionTM are typically used for real-time quantitative PCR. During elongation of primers, the probes are modified and thereby, a fluorescent signal is generated. (C & D) Hybridization assays for sequence-specific DNA-detection. Sensitivity can be increased by binding of multiple fluorophores to the amplified DNA by means of hybridization of fluorophore-labeled probes to
products of RCA (C) or PCR (D) processes. In the case of immuno-RCA, the antibody–DNA–conjugate remains intact during DNA amplification and thus, a multitude of hybridization probes can bind to spots of microarrays, containing the immobilized antigen. In PCR-ELOSA
(D), hapten-labeled amplicons, generated during PCR, are immobilized by means of surface-bound capture oligonucleotides and subsequent detection is carried out by using hapten- specific antibody–enzyme conjugates.
Слайд 82

Слайд 83

Слайд 84

Слайд 85

Слайд 86

Multiplex and polyplex assays for the detection of several antigens in

Multiplex and polyplex assays for the detection of several antigens in

a single sample:
in multiplex assays, different antigens (a and b) are tagged with different DNA sequences. Inpolyplex assays the sample is divided into small aliquots, each of which is analyzed individually by a target specific assay.
Слайд 87

Слайд 88

Schematic representing the flow of reactions involved in the immuno-PCR signal

Schematic representing the flow of reactions involved in the immuno-PCR signal

amplification assay for detection of SEA and SEB. The Bead Retriever facilitated recovery of magnetic beads during chemical reactions and SE recovery during the assays.
Слайд 89

iPCR-SA assay detection of SEA (A) or SEB (B) spiked into

iPCR-SA assay detection of SEA (A) or SEB (B) spiked into

tryptic soy broth at select levels. Controls consisted of lowest dilution without added SEA or SEB antigen (but processed accordingly), without SEA or SEB antibody, use of water as a sample, and a blank well with PCR reagents only. Inset shows overlapping melting curves of amplified products of all PCR-positive samples.
Слайд 90

iPCR-SA assay detection of staphylococcal enterotoxins A and B produced bySEz

iPCR-SA assay detection of staphylococcal enterotoxins A and B produced bySEz

S. aureus strains incubated in TSB, milk, lemon cream pie, tuna salad, and deli turkey. (A) Detection of SEA after incubation of S. aureus ATCC 13565 (SEA) in the various matrices using anti-SEA–coated magnetic beads. Control assays were performed with ATCC 14458 (SEB). (B) Detection of SEB after incubation with S. aureus ATCC 14458 (SEB) using anti-SEB–coated magnetic beads. Control assays were performed with ATCC 13565 (SEA). Insets show melting curves of amplified by-products obtained with a real-time PCR.
Слайд 91

Слайд 92

Слайд 93

Слайд 94

Слайд 95

Слайд 96

Слайд 97

Слайд 98

Слайд 99

Слайд 100

Слайд 101

Слайд 102

Слайд 103