Температура та її вимірювання

Слайд 2

Визначення температури Існує декілька визначень температури. 1. На побутовому рівні температура

Визначення температури

Існує декілька визначень температури.
1. На побутовому рівні температура пов'язана із

суб'єктивним сприйняттям «тепла» і «холоду». Наші відчуття дозволяють розрізняти якісні градації нагріву тіл: теплий, холодний, гарячий. Але придатна для науки кількісна міра ступеня нагріву не може бути виміряна за допомогою відчуттів. Простий експеримент підтверджує це. Якщо потримати одну руку у холодній воді, а другу — у гарячій, а потім обидві помістити у теплу воду, то рука, яка була у холодній воді буде відчувати тепло, а рука, що була у гарячій — холод. Крім того, за допомогою відчуттів ми можемо оцінювати ступінь нагріву чи охолодження у дуже вузькому діапазоні. Таким чином, необхідним є пов'язати кількісне вимірювання температури і побудову температурної шкали з об'єктивними фізичними явищами.
2. У класичній термодинаміці поняття емпіричної температури тісно пов'язане з рівновагою ізольованих систем, а саме — з тепловою рівновагою. Якщо дві ізольовані від навколишнього середовища рівноважні системи {\displaystyle A}; і {\displaystyle B}; ввести у тепловий контакт, який забезпечує особливий вид передачі енергії — прямий теплообмін між двома системами, то стан цих систем почне змінюватись до тих пір, поки між ними не настане стан рівноваги. Цей вид рівноваги, що не пов'язаний з масообміном, зміною тиску, концентрації або з хімічними перетвореннями, називається тепловою або термічною рівновагою. Теплова рівновага є такий стан, який допускає можливість здійснення оборотного теплообміну між системами необмежено довго без зміни їх стан
Слайд 3

Температура є єдиною функцією стану термодинамічної системи, яка вказує на напрям самовільного теплообміну між системами.

Температура є єдиною функцією стану термодинамічної системи, яка вказує на напрям

самовільного теплообміну між системами.
Слайд 4

Звідси випливає, по перше, що вищезгадані системи {\displaystyle A}; і {\displaystyle

Звідси випливає, по перше, що вищезгадані системи {\displaystyle A}; і {\displaystyle B}, які

перебувають між собою у стані теплової рівноваги мають однакову температуру у будь-якій температурній шкалі, а, по друге, — дві системи, які не знаходяться одна з одною у тепловому контакті, але кожна з них нарізно знаходиться у тепловій рівновазі з третьою системою (вимірювальний прилад) мають однакову температуру[1][2]. Останнє твердження має назву властивість транзитивності термодинамічної рівноваги[3]. Деякі автори (Р. Фаулер і Е. Гуггенгейм[4]) вважають цю властивість, яка почерпнута з загальнолюдського досвіду, нульовим началом термодинаміки.
Безпосереднє вимірювання температури є неможливим. У приладах для вимірювання температури (термометрах) використовують термометричне тіло, яке вводять у тепловий контакт з тілом, температуру якого потрібно виміряти. Фізична величина, яка знаходиться у функціональній залежності від температури і є її індикатором, має назву — термометрична величина. Наприклад, у рідинних термометрах термометричним тілом є рідина у резервуарі термометра, а термометричною величиною — об'єм рідини. У термометрах опору термометричним тілом є металеві дроти або напівпровідники, а термометричною величиною — їх електричні опори. Докладніше: Термометрія
Температура, що вимірюється термометрами називається емпіричною температурою. Строго кажучи, покази термометрів з різними термометричними тілами різняться між собою і збігаються лише в реперних точках. Наступним недоліком емпіричної температури є відсутність безперервної термометричної шкали, тому що жодне термометричне тіло неспроможне виконувати своє призначення у всьому діапазоні можливих температур.
Друге начало термодинаміки, а саме його частина — принцип існування абсолютної температури і ентропії ({\displaystyle \delta Q^{*}=TdS}), усуває цей недолік і дозволяє встановити термодинамічну шкалу, незалежну від термометричного тіла. Температура, виміряна за цією шкалою, є абсолютною аботермодинамічною температурою.
3. Поряд з термодинамічним, в інших розділах фізики можуть вводитись й інші визначення температури. На мікроскопічному рівні температура пов'язана із тепловим рухом атомів та молекул, із яких складаються фізичні тіла, а саме — з їх середньою кінетичною енергією. Тому умолекулярно-кінетичній теорії справедливим буде таке визначення:
Температу́ра — скалярна фізична величина, яка характеризує середню кінетичну енергію частинок макроскопічної системи, що припадає на один ступінь вільності.
Слайд 5

Температурні шкали Для однозначного визначення температури різними методами й на основі

Температурні шкали

Для однозначного визначення температури різними методами й на основі зміни

різних властивостей термометричних тіл, термометри необхідно градуювати. Для цього використовуються температурні шкали. В основі температурних шкал — особливі реперні точки, яким присвоюється певне значення температури. Історично склалися різні температурні шкали, що використовують різні реперні точки, які пов'язані з певними фізичними явищами, що відбуваються при певній температурі.
В Міжнародній системі одиниць (СІ) термодинамічна температура належить до семи основних одиниць і виражається у кельвінах. До похідних величин СІ, які мають спеціальну назву, належить температура Цельсія, яка вимірюється у градусах Цельсія[7]. На практиці часто застосовують градуси Цельсія через історичну прив'язку до важливих характеристикводи — температури танення льоду (0 °C) і температури кипіння (100 °C). Це зручно, оскільки більшість кліматичних процесів, процесів у живій природі, тощо пов'язані з цим діапазоном. Зміна температури на один градус Цельсія тотожна зміні температури на один Кельвін. Тому після введення в 1967 році нового визначення Кельвіна, температура кипіння води перестала грати роль незмінної реперної точки і, як показують точні вимірювання, вона вже не дорівнює 100 °C, а близька до 99,975 °C[8].