Презентации по Математике

Презентация по математике "Архимедовы тела" - скачать
Презентация по математике "Архимедовы тела" - скачать
Архимед (287 г. до н.э. – 212 г. до н.э) Архимедовы тела Полуправильные многогранники Известно еще множество совершенных тел, получивших название полуправильных многогранников илиАрхимедовых тел. У них также все многогранные углы равны и все грани – правильные многоугольники, но несколько разных типов. Существует 13 полуправильных многогранников, открытие которых приписывается Архимеду. Архимедовы тела: (а) усеченный тетраэдр, (б) усеченный куб, (в) усеченный октаэдр, (г) усеченный додекаэдр, (д) усеченный икосаэдр (а) (б) (в) (д) (г) Рис.1 Множество Архимедовых тел можно разбить на несколько групп. Первую из них составляют пять многогранников, которые получаются из Платоновых тел в результате их усечения. Усеченное тело – это тело с отрезанной верхушкой. Для Платоновых тел усечение может быть сделано таким образом, что и получающиеся новые грани и остающиеся части старых будут правильными многоугольниками. К примеру, тетраэдр (Рис. 1-а) можно усечь так, что его четыре треугольные грани превратятся в четыре гексагональные, и к ним добавятся четыре правильные треугольные грани. Таким путем могут быть получены пять Архимедовых тел: усеченный тетраэдр, усеченный гексаэдр (куб), усеченный октаэдр, усеченный додекаэдр и усеченный икосаэдр .
Продолжить чтение
Презентация по математике "Вычисление объемов пространственных тел с помощью интеграла" - скачать
Презентация по математике "Вычисление объемов пространственных тел с помощью интеграла" - скачать
Немного теории. Чтобы получить представление об общем методе вычисления объемов различных пространственных фигур, попробуем найти объем лимона. Ни на одно из тел, изучаемых в школе (призма, пирамида, шар, конус и т.д.), лимон не похож. Однако, мы можем поступить как все хозяйки – разрезать лимон на тонкие ломтики, размер которых зависит от расстояния x, причем x[0;H]. H x Тогда, по свойству объема, сумма объемов всех ломтиков даст нам объем всего лимона. Немного теории. H x x С точки зрения геометрии мы построили сечения пространственной фигуры плоскостями, перпендикулярными оси фигуры; причем, если принять число разбиений бесконечно большим числом (n→), то: Проще говоря, при бесконечном числе разбиений каждый ломтик «вырождается» в плоское сечение и объем лимона равен бесконечной интегральной сумме площадей таких сечений, зависящих от расстояния x, т.е. где H – высота тела, а Sсеч. – некоторая функция, зависящая от x, причем x[0;H]. Sсеч.
Продолжить чтение
Презентация по математике "Классификация и свойства правильных многогранников" - скачать
Презентация по математике "Классификация и свойства правильных многогранников" - скачать
Свойства многогранников Многогранники представляют собой простейшие тела в пространстве. Многогранные формы мы видим ежедневно: спичичный коробок, книга, комната, многоэтажный дом, граненый карандаш, гайка. С чисто геометрической точки зрения многогранник - это часть пространства, ограниченная плоскими многоугольниками - гранями. Грани образуют так называемую многогранную поверхность. На многогранную поверхность обычно накладывают следующие ограничения:1) каждое ребро должно являться общей стороной двух, и только двух, граней, называемых смежными; 2) каждые две грани можно соединить цепочкой последовательно смежных граней; 3) для каждой вершины углы прилежащих к этой вершине граней должны ограничивать некоторый многогранный угол. Многогранник называют выпуклым, если он лежит по одну сторону от плоскости любой из его граней. Это условие эквивалентно каждому из двух других: 1) отрезок с концами в любых двух точках многогранника целиком лежит в многограннике, 2) многогранник можно представить как пересечение нескольких полупространств. Самые простые многогранники - четырехвершинники или четырехгранники - всегда ограничены четырьмя треугольными гранями. Но уже пятигранники могут быть совершенно разных типов. Как и многоугольники, многогранники характеризуются также по степени их симметричности. Среди пирамид выделяют правильные: в основании у них лежит правильный многоугольник, а высота-перпендикуляр, проведенный из вершины к плоскости основания, - попадает в центр основания пирамиды. Исследуем возможность существования правильных многогранников. При этом будем опираться на свойство плоских углов многогранного угла. Теорема: Сумма плоских углов выпуклого многогранника угла меньше 4d (3600). а) Пусть грани правильного многогранника – правильные треугольники. L = 600. Если при вершине многогранного угла n плоских углов, то 600 n < 3600 , n < 6, n = 3, 4, 5, т.е. существует 3 вида правильных многогранников с треугольными гранями. Это тетраэдр, октаэдр, икосаэдр.
Продолжить чтение